- 1.
Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 1, 607–628 (2005).
- 2.
Larrieu, T. & Sandi, C. Stress-induced depression: is social rank a predictive risk factor? BioEssays 40, 1–10 (2018).
- 3.
De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).
- 4.
Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).
- 5.
Sandi, C. & Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 16, 290–304 (2015).
- 6.
Treiber, F. A. et al. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom. Med. 65, 46–62 (2003).
- 7.
Song, H. et al. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ 365, 1–10 (2019).
- 8.
Guan, L., Collet, J. P., Mazowita, G. & Claydon, V. E. Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Front. Neurol. 9, 1–16 (2018).
- 9.
Guan, L. et al. Autonomic parameter and stress profile predict secondary ischemic events after transient ischemic attack or minor stroke. Stroke 50, 2007–2015 (2019).
- 10.
Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).
- 11.
Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).
- 12.
McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).
- 13.
Juster, R. P., McEwen, B. S. & Lupien, S. J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35, 2–16 (2010).
- 14.
Weger, M. & Sandi, C. High anxiety trait: a vulnerable phenotype for stress-induced depression. Neurosci. Biobehav. Rev. 87, 27–37 (2018).
- 15.
Steptoe, A. & Marmot, M. Socioeconomic status and coronary heart disease: a psychobiological perspective. Popul. Dev. Rev. 30, 133–150 (2004).
- 16.
Seyhan, A. A. & Carini, C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med. 17, 1–28 (2019).
- 17.
Fisher, E. B. et al. Behavior matters. Am. J. Prev. Med. 40, e15–e30 (2011).
- 18.
Jethwani, K., Kvedar, J. & Kvedar, J. Behavioral phenotyping: a tool for personalized medicine. Per. Med. 7, 689–693 (2010).
- 19.
Insel, T. R. Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216 (2017).
- 20.
Barrigon, M. L., Courtet, P., Oquendo, M. & Baca-García, E. Precision medicine and suicide: an opportunity for digital health. Curr. Psychiatry Rep. 21, 131 (2019).
- 21.
Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. npj Digit. Med. 2, 88 (2019).
- 22.
McLean, S. A. et al. The AURORA Study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Mol. Psychiatry 25, 283–296 (2020).
- 23.
Li, P. et al. More random motor activity fluctuations predict incident frailty, disability, and mortality. Sci. Transl. Med. 11, 1–10 (2019).
- 24.
Li, P. et al. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimer’s Dement. 14, 1114–1125 (2018).
- 25.
Vahia, I. et al. Identification and evaluation of behavioral symptoms in dementia using passive radio sensing and machine learning. Am. J. Geriatr. Psychiatry 27, S167–S168 (2019).
- 26.
Riva, G. et al. Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol. Behav. 10, 45–56 (2007).
- 27.
Macedonio, M. F., Parsons, T. D., Digiuseppe, R. A., Weiderhold, B. A. & Rizzo, A. A. Immersiveness and physiological arousal within panoramic video-based virtual reality. CyberPsychol. Behav. 10, 508–515 (2007).
- 28.
Han, K. et al. Measurement of expression characteristics in emotional situations using virtual reality. IEEE Virtual Reality Conference 39, 265–266 (2009).
- 29.
Bergström, I., Kilteni, K. & Slater, M. First-person perspective virtual body posture influences stress: a virtual reality body ownership study. PLoS ONE 11, 1–21 (2016).
- 30.
Bullinger, A. H. et al. Stimulation of cortisol during mental task performance in a provocative virtual environment. Appl. Psychophysiol. Biofeedback 30, 205–216 (2005).
- 31.
Cornwell, B. R., Johnson, L., Berardi, L. & Grillon, C. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity. Biol. Psychiatry 59, 664–666 (2006).
- 32.
Sandi, C. et al. Chronic stress-induced alterations in amygdala responsiveness and behavior - modulation by trait anxiety and corticotropin-releasing factor systems. Eur. J. Neurosci. 28, 1836–1848 (2008).
- 33.
Castro, J. E. et al. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 37, 1209–1223 (2012).
- 34.
Nasca, C., Bigio, B., Zelli, D., Nicoletti, F. & McEwen, B. S. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol. Psychiatry 20, 755–763 (2015).
- 35.
Larrieu, T. et al. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol. 27, 2202–2210 (2017). e4.
- 36.
Carnevali, L., Thayer, J. F., Brosschot, J. F. & Ottaviani, C. Heart rate variability mediates the link between rumination and depressive symptoms: a longitudinal study. Int. J. Psychophysiol. 131, 131–138 (2018).
- 37.
Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A. & Nalivaiko, E. In the search for integrative biomarker of resilience to psychological stress. Neurosci. Biobehav. Rev. 74, 310–320 (2017).
- 38.
Perna, G. et al. Heart rate variability: can it serve as a marker of mental health resilience? J. Affect. Disord. 263, 754–761 (2019).
- 39.
Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 55, 1–14 (2018).
- 40.
Walker, S. E., Zanoletti, O., Guillot de Suduiraut, I. & Sandi, C. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology 84, 1–10 (2017).
- 41.
Carnevali, L., Koenig, J., Sgoifo, A. & Ottaviani, C. Autonomic and brain morphological predictors of stress resilience. Front. Neurosci. 12, 1–13 (2018).
- 42.
Beauchaine, T. P. & Thayer, J. F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350 (2015).
- 43.
Sessa, F. et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY). 10, 166–177 (2018).
- 44.
Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122–131 (2010).
- 45.
Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).
- 46.
Steptoe, A. & Marmot, M. Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure. J. Hypertens. 23, 529–536 (2005).
- 47.
Matthews, K. A., Salomon, K., Brady, S. S. & Allen, M. T. Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosom. Med. 65, 410–415 (2003).
- 48.
Wood, D. L., Sheps, S. G., Elveback, L. R. & Schirger, A. Cold pressor test as a predictor of hypertension. Hypertension 6, 301–306 (1984).
- 49.
Dikecligil, G. N. & Mujica-Parodi, L. R. Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol. Psychiatry 67, 1185–1190 (2010).
- 50.
Gerin, W. et al. An historical context for behavioral models of hypertension. J. Psychosom. Res. 48, 369–377 (2000).
- 51.
Carroll, D. et al. Blood pressure reactions to acute psychological stress and future blood pressure status: a 10-year follow-up of men in the whitehall II study. Psychosom. Med. 63, 737–743 (2001).
- 52.
Kamarck, T. W. & Lovallo, W. R. Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom. Med. 65, 9–21 (2003).
- 53.
Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E. & Weiss, R. Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology 43, 46–56 (2006).
- 54.
Bailey, T., Shahabi, L., Tarvainen, M., Shapiro, D. & Ottaviani, C. Moderating effects of the valence of social interaction on the dysfunctional consequences of perseverative cognition: an ecological study in major depression and social anxiety disorder. Anxiety, Stress Coping 32, 179–195 (2019).
- 55.
Walsh, R. N. & Cummins, R. A. The open-field test: a critical review. Psychol. Bull. 83, 482–504 (1976).
- 56.
Crawley, J. N. Exploratory behavior models of anxiety in mice. Neurosci. Biobehav. Rev. 9, 37–44 (1985).
- 57.
Deacon, R. M. J. The successive alleys test of anxiety in mice and rats. J. Vis. Exp. 2013, 2705 (2013).
- 58.
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996).
- 59.
Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).
- 60.
Chalmers, J. A., Quintana, D. S., Abbott, M. J. A. & Kemp, A. H. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psychiatry 5, 1–11 (2014).
- 61.
Williams, D. P. et al. Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis. Front. Hum. Neurosci. 11, 1–10 (2018).
- 62.
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (2016).
- 63.
Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. 30th International Confeence Machine Learning 28, 115–123 (2013).
- 64.
Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 2017-Decem, 4766–4775 (2017).
- 65.
Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).
- 66.
Nasca, C., Davis, E., Bigio, B., Sandi, C. & McEwen, B. S. Effects of Stress Throughout the Lifespan on the Brain and Behavior. In Hormones, Brain and Behavior. 3rd edn (eds. Pfaff, D. W. & Joëls, M.) 5, 443–463 (Academic Press, 2017).
- 67.
Cruz, A. P. M., Frei, F. & Graeff, F. G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol. Biochem. Behav. 49, 171–176 (1994).
- 68.
Rodgers, R. J. & Johnson, N. J. T. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav. 52, 297–303 (1995).
- 69.
Stedenfeld, K. A. et al. Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210–216 (2011).
- 70.
Kallai, J. et al. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30 (2007).
- 71.
Friedman, B. H. & Thayer, J. F. Autonomic balance revisited: panic anxiety and HRV. J. Psychosom. Res. 44, 133–151 (1998).
- 72.
Thayer, J. F., Friedman, B. H. & Borkovec, T. D. Autonomic characteristics of generalized anxiety disorder and worry. Biol. Psychiatry 39, 255–266 (1996).
- 73.
Goette, L., Bendahan, S., Thoresen, J., Hollis, F. & Sandi, C. Stress pulls us apart: anxiety leads to differences in competitive confidence under stress. Psychoneuroendocrinology 54, 115–123 (2015).
- 74.
Perry, W. et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66, 1072–1080 (2009).
- 75.
Walz, N., Mühlberger, A. & Pauli, P. A human open field test reveals thigmotaxis related to agoraphobic fear. Biol. Psychiatry 80, 390–397 (2016).
- 76.
Biedermann, S. V. et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 15, 125 (2017).
- 77.
Forkosh, O. et al. Identity domains capture individual differences from across the behavioral repertoire. Nat. Neurosci. 22, 2023–2028 (2019).
- 78.
Abbas, W. & Rodo, D. M. Computer methods for automatic locomotion and gesture tracking in mice and small animals for neuroscience applications: a survey. Sensors (Switzerland) 19, 3274 (2019).
- 79.
Robie, A. A. et al. Mapping the neural substrates of behavior. Cell 170, 393–406 (2017). e28.
- 80.
Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 111, 16136–16141 (2014).
- 81.
Chen, R. J. et al. MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience 305, 36–48 (2015).
- 82.
Swartz, J. R., Knodt, A. R., Radtke, S. R. & Hariri, A. R. A neural biomarker of psychological vulnerability to future life stress. Neuron 85, 505–511 (2015).
- 83.
Georgiou, K. et al. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. (Plovdiv.). 60, 7–20 (2018).
- 84.
Jeyhani, V., Mahdiani, S., Peltokangas, M. & Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 5952–5955 (2015).
- 85.
Stumpf, P. S. et al. Mapping biology from mouse to man using transfer learning. bioRxiv https://doi.org/10.1101/2019.12.26.888842 (2019).
- 86.
Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The’Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).
- 87.
Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008).
- 88.
Huzard, D. et al. Low vagal tone in two rat models of psychopathology involving high or low corticosterone stress responses. Psychoneuroendocrinology 101, 101–110 (2019).
- 89.
Sprager, S. & Juric, M. B. Inertial sensor-based gait recognition: a review. Sensors (Switzerland) 15, 22089–22127 (2015).
- 90.
Hsu, C. Y., Hristov, R., Lee, G. H., Zhao, M. & Katabi, D. Enabling identification and behavioral sensing in homes using radio reflections. CHI Conference on Human Factors in Computing Systems Proceedings. 1–13 (2019)
- 91.
Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). 4–26 (Consulting Psychologists Press, Palo Alto, CA, 1983).
- 92.
Schubert, T. The sense of presence in virtual environments: a three-component scale measuring spatial presence, involvement, and realness. Z. f.ür. Medienpsychol. 15, 69–71 (2003).
- 93.
Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355–391 (2004).
- 94.
Dedovic, K. et al. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30, 319–325 (2005).
- 95.
Veit, R. et al. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances. Front. Hum. Neurosci. 7, 1–12 (2013).
- 96.
Schmitz, A. & Grillon, C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat. Protoc. 7, 527–532 (2012).
- 97.
Vytal, K. E., Overstreet, C., Charney, D. R., Robinson, O. J. & Grillon, C. Sustained anxiety increases amygdala-dorsomedial prefrontal coupling: A mechanism for maintaining an anxious state in healthy adults. J. Psychiatry Neurosci. 39, 321–329 (2014).
- 98.
Chénéchal, M. Le & Goldman, J. C. HTC Vive Pro Time Performance Benchmark for Scientific Research. International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments. 81–84 (2018).
- 99.
GG, B. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 (1997).
- 100.
Koenig, J., Williams, D. P., Kemp, A. H. & Thayer, J. F. Vagally mediated heart rate variability in headache patients - a systematic review and meta-analysis. Cephalalgia 36, 265–278 (2016).
- 101.
Vouros, A. et al. A generalised framework for detailed classification of swimming paths inside the Morris Water Maze. Sci. Rep. 8, 1–15 (2018).
- 102.
Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J. & Gifford, E. M. Extreme gradient boosting as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 56, 2353–2360 (2016).
- 103.
Gao, C. et al. Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Sci. Rep. 8, 1–21 (2018).
- 104.
Nishio, M. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS ONE 13, 1–13 (2018).
- 105.
Qiao, Z. et al. Using machine learning approaches for emergency room visit prediction based on electronic health record data. Stud. Health Technol. Inform. 247, 111–115 (2018).
- 106.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).
Comments
Something to say?
Log in or Sign up for free