欢迎来到国际知识中心
Locomotion in virtual environments predicts cardiovascular responsiveness to subsequent stressful challenges
  1. 1.

    Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 1, 607–628 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Larrieu, T. & Sandi, C. Stress-induced depression: is social rank a predictive risk factor? BioEssays 40, 1–10 (2018).

    Article  Google Scholar 

  3. 3.

    De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Sandi, C. & Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 16, 290–304 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Treiber, F. A. et al. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom. Med. 65, 46–62 (2003).

    PubMed  Article  Google Scholar 

  7. 7.

    Song, H. et al. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ 365, 1–10 (2019).

    Google Scholar 

  8. 8.

    Guan, L., Collet, J. P., Mazowita, G. & Claydon, V. E. Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Front. Neurol. 9, 1–16 (2018).

    Article  Google Scholar 

  9. 9.

    Guan, L. et al. Autonomic parameter and stress profile predict secondary ischemic events after transient ischemic attack or minor stroke. Stroke 50, 2007–2015 (2019).

    PubMed  Article  Google Scholar 

  10. 10.

    Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Juster, R. P., McEwen, B. S. & Lupien, S. J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35, 2–16 (2010).

    PubMed  Article  Google Scholar 

  14. 14.

    Weger, M. & Sandi, C. High anxiety trait: a vulnerable phenotype for stress-induced depression. Neurosci. Biobehav. Rev. 87, 27–37 (2018).

    PubMed  Article  Google Scholar 

  15. 15.

    Steptoe, A. & Marmot, M. Socioeconomic status and coronary heart disease: a psychobiological perspective. Popul. Dev. Rev. 30, 133–150 (2004).

    Google Scholar 

  16. 16.

    Seyhan, A. A. & Carini, C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med. 17, 1–28 (2019).

    Article  Google Scholar 

  17. 17.

    Fisher, E. B. et al. Behavior matters. Am. J. Prev. Med. 40, e15–e30 (2011).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Jethwani, K., Kvedar, J. & Kvedar, J. Behavioral phenotyping: a tool for personalized medicine. Per. Med. 7, 689–693 (2010).

    PubMed  Article  Google Scholar 

  19. 19.

    Insel, T. R. Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216 (2017).

    PubMed  Article  Google Scholar 

  20. 20.

    Barrigon, M. L., Courtet, P., Oquendo, M. & Baca-García, E. Precision medicine and suicide: an opportunity for digital health. Curr. Psychiatry Rep. 21, 131 (2019).

  21. 21.

    Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. npj Digit. Med. 2, 88 (2019).

  22. 22.

    McLean, S. A. et al. The AURORA Study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Mol. Psychiatry 25, 283–296 (2020).

    PubMed  Article  Google Scholar 

  23. 23.

    Li, P. et al. More random motor activity fluctuations predict incident frailty, disability, and mortality. Sci. Transl. Med. 11, 1–10 (2019).

    Google Scholar 

  24. 24.

    Li, P. et al. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimer’s Dement. 14, 1114–1125 (2018).

    Article  Google Scholar 

  25. 25.

    Vahia, I. et al. Identification and evaluation of behavioral symptoms in dementia using passive radio sensing and machine learning. Am. J. Geriatr. Psychiatry 27, S167–S168 (2019).

    Article  Google Scholar 

  26. 26.

    Riva, G. et al. Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol. Behav. 10, 45–56 (2007).

    PubMed  Article  Google Scholar 

  27. 27.

    Macedonio, M. F., Parsons, T. D., Digiuseppe, R. A., Weiderhold, B. A. & Rizzo, A. A. Immersiveness and physiological arousal within panoramic video-based virtual reality. CyberPsychol. Behav. 10, 508–515 (2007).

    PubMed  Article  Google Scholar 

  28. 28.

    Han, K. et al. Measurement of expression characteristics in emotional situations using virtual reality. IEEE Virtual Reality Conference 39, 265–266 (2009).

    Google Scholar 

  29. 29.

    Bergström, I., Kilteni, K. & Slater, M. First-person perspective virtual body posture influences stress: a virtual reality body ownership study. PLoS ONE 11, 1–21 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Bullinger, A. H. et al. Stimulation of cortisol during mental task performance in a provocative virtual environment. Appl. Psychophysiol. Biofeedback 30, 205–216 (2005).

    PubMed  Article  Google Scholar 

  31. 31.

    Cornwell, B. R., Johnson, L., Berardi, L. & Grillon, C. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity. Biol. Psychiatry 59, 664–666 (2006).

    PubMed  Article  Google Scholar 

  32. 32.

    Sandi, C. et al. Chronic stress-induced alterations in amygdala responsiveness and behavior - modulation by trait anxiety and corticotropin-releasing factor systems. Eur. J. Neurosci. 28, 1836–1848 (2008).

    PubMed  Article  Google Scholar 

  33. 33.

    Castro, J. E. et al. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 37, 1209–1223 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nasca, C., Bigio, B., Zelli, D., Nicoletti, F. & McEwen, B. S. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol. Psychiatry 20, 755–763 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Larrieu, T. et al. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol. 27, 2202–2210 (2017). e4.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Carnevali, L., Thayer, J. F., Brosschot, J. F. & Ottaviani, C. Heart rate variability mediates the link between rumination and depressive symptoms: a longitudinal study. Int. J. Psychophysiol. 131, 131–138 (2018).

    PubMed  Article  Google Scholar 

  37. 37.

    Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A. & Nalivaiko, E. In the search for integrative biomarker of resilience to psychological stress. Neurosci. Biobehav. Rev. 74, 310–320 (2017).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Perna, G. et al. Heart rate variability: can it serve as a marker of mental health resilience? J. Affect. Disord. 263, 754–761 (2019).

    PubMed  Article  Google Scholar 

  39. 39.

    Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 55, 1–14 (2018).

    Article  Google Scholar 

  40. 40.

    Walker, S. E., Zanoletti, O., Guillot de Suduiraut, I. & Sandi, C. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology 84, 1–10 (2017).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Carnevali, L., Koenig, J., Sgoifo, A. & Ottaviani, C. Autonomic and brain morphological predictors of stress resilience. Front. Neurosci. 12, 1–13 (2018).

    Article  Google Scholar 

  42. 42.

    Beauchaine, T. P. & Thayer, J. F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350 (2015).

    PubMed  Article  Google Scholar 

  43. 43.

    Sessa, F. et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY). 10, 166–177 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122–131 (2010).

    PubMed  Article  Google Scholar 

  45. 45.

    Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).

    PubMed  Article  Google Scholar 

  46. 46.

    Steptoe, A. & Marmot, M. Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure. J. Hypertens. 23, 529–536 (2005).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Matthews, K. A., Salomon, K., Brady, S. S. & Allen, M. T. Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosom. Med. 65, 410–415 (2003).

    PubMed  Article  Google Scholar 

  48. 48.

    Wood, D. L., Sheps, S. G., Elveback, L. R. & Schirger, A. Cold pressor test as a predictor of hypertension. Hypertension 6, 301–306 (1984).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Dikecligil, G. N. & Mujica-Parodi, L. R. Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol. Psychiatry 67, 1185–1190 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Gerin, W. et al. An historical context for behavioral models of hypertension. J. Psychosom. Res. 48, 369–377 (2000).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Carroll, D. et al. Blood pressure reactions to acute psychological stress and future blood pressure status: a 10-year follow-up of men in the whitehall II study. Psychosom. Med. 63, 737–743 (2001).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kamarck, T. W. & Lovallo, W. R. Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom. Med. 65, 9–21 (2003).

    PubMed  Article  Google Scholar 

  53. 53.

    Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E. & Weiss, R. Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology 43, 46–56 (2006).

    PubMed  Article  Google Scholar 

  54. 54.

    Bailey, T., Shahabi, L., Tarvainen, M., Shapiro, D. & Ottaviani, C. Moderating effects of the valence of social interaction on the dysfunctional consequences of perseverative cognition: an ecological study in major depression and social anxiety disorder. Anxiety, Stress Coping 32, 179–195 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Walsh, R. N. & Cummins, R. A. The open-field test: a critical review. Psychol. Bull. 83, 482–504 (1976).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Crawley, J. N. Exploratory behavior models of anxiety in mice. Neurosci. Biobehav. Rev. 9, 37–44 (1985).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Deacon, R. M. J. The successive alleys test of anxiety in mice and rats. J. Vis. Exp. 2013, 2705 (2013).

  58. 58.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996).

    Article  Google Scholar 

  59. 59.

    Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).

    Article  Google Scholar 

  60. 60.

    Chalmers, J. A., Quintana, D. S., Abbott, M. J. A. & Kemp, A. H. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psychiatry 5, 1–11 (2014).

    Article  Google Scholar 

  61. 61.

    Williams, D. P. et al. Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis. Front. Hum. Neurosci. 11, 1–10 (2018).

    Google Scholar 

  62. 62.

    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (2016).

  63. 63.

    Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. 30th International Confeence Machine Learning 28, 115–123 (2013).

    Google Scholar 

  64. 64.

    Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 2017-Decem, 4766–4775 (2017).

    Google Scholar 

  65. 65.

    Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    PubMed  Article  Google Scholar 

  66. 66.

    Nasca, C., Davis, E., Bigio, B., Sandi, C. & McEwen, B. S. Effects of Stress Throughout the Lifespan on the Brain and Behavior. In Hormones, Brain and Behavior. 3rd edn (eds. Pfaff, D. W. & Joëls, M.) 5, 443–463 (Academic Press, 2017).

  67. 67.

    Cruz, A. P. M., Frei, F. & Graeff, F. G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol. Biochem. Behav. 49, 171–176 (1994).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Rodgers, R. J. & Johnson, N. J. T. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav. 52, 297–303 (1995).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Stedenfeld, K. A. et al. Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210–216 (2011).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kallai, J. et al. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30 (2007).

    PubMed  Article  Google Scholar 

  71. 71.

    Friedman, B. H. & Thayer, J. F. Autonomic balance revisited: panic anxiety and HRV. J. Psychosom. Res. 44, 133–151 (1998).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Thayer, J. F., Friedman, B. H. & Borkovec, T. D. Autonomic characteristics of generalized anxiety disorder and worry. Biol. Psychiatry 39, 255–266 (1996).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Goette, L., Bendahan, S., Thoresen, J., Hollis, F. & Sandi, C. Stress pulls us apart: anxiety leads to differences in competitive confidence under stress. Psychoneuroendocrinology 54, 115–123 (2015).

    PubMed  Article  Google Scholar 

  74. 74.

    Perry, W. et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66, 1072–1080 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Walz, N., Mühlberger, A. & Pauli, P. A human open field test reveals thigmotaxis related to agoraphobic fear. Biol. Psychiatry 80, 390–397 (2016).

    PubMed  Article  Google Scholar 

  76. 76.

    Biedermann, S. V. et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 15, 125 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Forkosh, O. et al. Identity domains capture individual differences from across the behavioral repertoire. Nat. Neurosci. 22, 2023–2028 (2019).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Abbas, W. & Rodo, D. M. Computer methods for automatic locomotion and gesture tracking in mice and small animals for neuroscience applications: a survey. Sensors (Switzerland) 19, 3274 (2019).

  79. 79.

    Robie, A. A. et al. Mapping the neural substrates of behavior. Cell 170, 393–406 (2017). e28.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 111, 16136–16141 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  81. 81.

    Chen, R. J. et al. MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience 305, 36–48 (2015).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Swartz, J. R., Knodt, A. R., Radtke, S. R. & Hariri, A. R. A neural biomarker of psychological vulnerability to future life stress. Neuron 85, 505–511 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Georgiou, K. et al. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. (Plovdiv.). 60, 7–20 (2018).

    PubMed  Google Scholar 

  84. 84.

    Jeyhani, V., Mahdiani, S., Peltokangas, M. & Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 5952–5955 (2015).

    PubMed  Google Scholar 

  85. 85.

    Stumpf, P. S. et al. Mapping biology from mouse to man using transfer learning. bioRxiv https://doi.org/10.1101/2019.12.26.888842 (2019).

  86. 86.

    Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The’Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Huzard, D. et al. Low vagal tone in two rat models of psychopathology involving high or low corticosterone stress responses. Psychoneuroendocrinology 101, 101–110 (2019).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Sprager, S. & Juric, M. B. Inertial sensor-based gait recognition: a review. Sensors (Switzerland) 15, 22089–22127 (2015).

  90. 90.

    Hsu, C. Y., Hristov, R., Lee, G. H., Zhao, M. & Katabi, D. Enabling identification and behavioral sensing in homes using radio reflections. CHI Conference on Human Factors in Computing Systems Proceedings. 1–13 (2019)

  91. 91.

    Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). 4–26 (Consulting Psychologists Press, Palo Alto, CA, 1983).

  92. 92.

    Schubert, T. The sense of presence in virtual environments: a three-component scale measuring spatial presence, involvement, and realness. Z. f.ür. Medienpsychol. 15, 69–71 (2003).

    Article  Google Scholar 

  93. 93.

    Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355–391 (2004).

    PubMed  Article  Google Scholar 

  94. 94.

    Dedovic, K. et al. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30, 319–325 (2005).

    PubMed  Google Scholar 

  95. 95.

    Veit, R. et al. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances. Front. Hum. Neurosci. 7, 1–12 (2013).

    Article  Google Scholar 

  96. 96.

    Schmitz, A. & Grillon, C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat. Protoc. 7, 527–532 (2012).

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Vytal, K. E., Overstreet, C., Charney, D. R., Robinson, O. J. & Grillon, C. Sustained anxiety increases amygdala-dorsomedial prefrontal coupling: A mechanism for maintaining an anxious state in healthy adults. J. Psychiatry Neurosci. 39, 321–329 (2014).

    PubMed  Article  Google Scholar 

  98. 98.

    Chénéchal, M. Le & Goldman, J. C. HTC Vive Pro Time Performance Benchmark for Scientific Research. International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments. 81–84 (2018).

  99. 99.

    GG, B. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 (1997).

    Article  Google Scholar 

  100. 100.

    Koenig, J., Williams, D. P., Kemp, A. H. & Thayer, J. F. Vagally mediated heart rate variability in headache patients - a systematic review and meta-analysis. Cephalalgia 36, 265–278 (2016).

    PubMed  Article  Google Scholar 

  101. 101.

    Vouros, A. et al. A generalised framework for detailed classification of swimming paths inside the Morris Water Maze. Sci. Rep. 8, 1–15 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J. & Gifford, E. M. Extreme gradient boosting as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 56, 2353–2360 (2016).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Gao, C. et al. Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Sci. Rep. 8, 1–21 (2018).

    ADS  Article  CAS  Google Scholar 

  104. 104.

    Nishio, M. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS ONE 13, 1–13 (2018).

    Google Scholar 

  105. 105.

    Qiao, Z. et al. Using machine learning approaches for emergency room visit prediction based on electronic health record data. Stud. Health Technol. Inform. 247, 111–115 (2018).

    PubMed  Google Scholar 

  106. 106.

    Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 1, 607–628 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Larrieu, T. & Sandi, C. Stress-induced depression: is social rank a predictive risk factor? BioEssays 40, 1–10 (2018).

    Article  Google Scholar 

  3. 3.

    De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5.

    Sandi, C. & Haller, J. Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat. Rev. Neurosci. 16, 290–304 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Treiber, F. A. et al. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom. Med. 65, 46–62 (2003).

    PubMed  Article  Google Scholar 

  7. 7.

    Song, H. et al. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ 365, 1–10 (2019).

    Google Scholar 

  8. 8.

    Guan, L., Collet, J. P., Mazowita, G. & Claydon, V. E. Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Front. Neurol. 9, 1–16 (2018).

    Article  Google Scholar 

  9. 9.

    Guan, L. et al. Autonomic parameter and stress profile predict secondary ischemic events after transient ischemic attack or minor stroke. Stroke 50, 2007–2015 (2019).

    PubMed  Article  Google Scholar 

  10. 10.

    Kivimäki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Juster, R. P., McEwen, B. S. & Lupien, S. J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 35, 2–16 (2010).

    PubMed  Article  Google Scholar 

  14. 14.

    Weger, M. & Sandi, C. High anxiety trait: a vulnerable phenotype for stress-induced depression. Neurosci. Biobehav. Rev. 87, 27–37 (2018).

    PubMed  Article  Google Scholar 

  15. 15.

    Steptoe, A. & Marmot, M. Socioeconomic status and coronary heart disease: a psychobiological perspective. Popul. Dev. Rev. 30, 133–150 (2004).

    Google Scholar 

  16. 16.

    Seyhan, A. A. & Carini, C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med. 17, 1–28 (2019).

    Article  Google Scholar 

  17. 17.

    Fisher, E. B. et al. Behavior matters. Am. J. Prev. Med. 40, e15–e30 (2011).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Jethwani, K., Kvedar, J. & Kvedar, J. Behavioral phenotyping: a tool for personalized medicine. Per. Med. 7, 689–693 (2010).

    PubMed  Article  Google Scholar 

  19. 19.

    Insel, T. R. Digital phenotyping: technology for a new science of behavior. JAMA 318, 1215–1216 (2017).

    PubMed  Article  Google Scholar 

  20. 20.

    Barrigon, M. L., Courtet, P., Oquendo, M. & Baca-García, E. Precision medicine and suicide: an opportunity for digital health. Curr. Psychiatry Rep. 21, 131 (2019).

  21. 21.

    Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. npj Digit. Med. 2, 88 (2019).

  22. 22.

    McLean, S. A. et al. The AURORA Study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Mol. Psychiatry 25, 283–296 (2020).

    PubMed  Article  Google Scholar 

  23. 23.

    Li, P. et al. More random motor activity fluctuations predict incident frailty, disability, and mortality. Sci. Transl. Med. 11, 1–10 (2019).

    Google Scholar 

  24. 24.

    Li, P. et al. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimer’s Dement. 14, 1114–1125 (2018).

    Article  Google Scholar 

  25. 25.

    Vahia, I. et al. Identification and evaluation of behavioral symptoms in dementia using passive radio sensing and machine learning. Am. J. Geriatr. Psychiatry 27, S167–S168 (2019).

    Article  Google Scholar 

  26. 26.

    Riva, G. et al. Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol. Behav. 10, 45–56 (2007).

    PubMed  Article  Google Scholar 

  27. 27.

    Macedonio, M. F., Parsons, T. D., Digiuseppe, R. A., Weiderhold, B. A. & Rizzo, A. A. Immersiveness and physiological arousal within panoramic video-based virtual reality. CyberPsychol. Behav. 10, 508–515 (2007).

    PubMed  Article  Google Scholar 

  28. 28.

    Han, K. et al. Measurement of expression characteristics in emotional situations using virtual reality. IEEE Virtual Reality Conference 39, 265–266 (2009).

    Google Scholar 

  29. 29.

    Bergström, I., Kilteni, K. & Slater, M. First-person perspective virtual body posture influences stress: a virtual reality body ownership study. PLoS ONE 11, 1–21 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Bullinger, A. H. et al. Stimulation of cortisol during mental task performance in a provocative virtual environment. Appl. Psychophysiol. Biofeedback 30, 205–216 (2005).

    PubMed  Article  Google Scholar 

  31. 31.

    Cornwell, B. R., Johnson, L., Berardi, L. & Grillon, C. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity. Biol. Psychiatry 59, 664–666 (2006).

    PubMed  Article  Google Scholar 

  32. 32.

    Sandi, C. et al. Chronic stress-induced alterations in amygdala responsiveness and behavior - modulation by trait anxiety and corticotropin-releasing factor systems. Eur. J. Neurosci. 28, 1836–1848 (2008).

    PubMed  Article  Google Scholar 

  33. 33.

    Castro, J. E. et al. Personality traits in rats predict vulnerability and resilience to developing stress-induced depression-like behaviors, HPA axis hyper-reactivity and brain changes in pERK1/2 activity. Psychoneuroendocrinology 37, 1209–1223 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Nasca, C., Bigio, B., Zelli, D., Nicoletti, F. & McEwen, B. S. Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility. Mol. Psychiatry 20, 755–763 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Larrieu, T. et al. Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr. Biol. 27, 2202–2210 (2017). e4.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Carnevali, L., Thayer, J. F., Brosschot, J. F. & Ottaviani, C. Heart rate variability mediates the link between rumination and depressive symptoms: a longitudinal study. Int. J. Psychophysiol. 131, 131–138 (2018).

    PubMed  Article  Google Scholar 

  37. 37.

    Walker, F. R., Pfingst, K., Carnevali, L., Sgoifo, A. & Nalivaiko, E. In the search for integrative biomarker of resilience to psychological stress. Neurosci. Biobehav. Rev. 74, 310–320 (2017).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Perna, G. et al. Heart rate variability: can it serve as a marker of mental health resilience? J. Affect. Disord. 263, 754–761 (2019).

    PubMed  Article  Google Scholar 

  39. 39.

    Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 55, 1–14 (2018).

    Article  Google Scholar 

  40. 40.

    Walker, S. E., Zanoletti, O., Guillot de Suduiraut, I. & Sandi, C. Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology 84, 1–10 (2017).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Carnevali, L., Koenig, J., Sgoifo, A. & Ottaviani, C. Autonomic and brain morphological predictors of stress resilience. Front. Neurosci. 12, 1–13 (2018).

    Article  Google Scholar 

  42. 42.

    Beauchaine, T. P. & Thayer, J. F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350 (2015).

    PubMed  Article  Google Scholar 

  43. 43.

    Sessa, F. et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY). 10, 166–177 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Thayer, J. F., Yamamoto, S. S. & Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122–131 (2010).

    PubMed  Article  Google Scholar 

  45. 45.

    Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).

    PubMed  Article  Google Scholar 

  46. 46.

    Steptoe, A. & Marmot, M. Impaired cardiovascular recovery following stress predicts 3-year increases in blood pressure. J. Hypertens. 23, 529–536 (2005).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Matthews, K. A., Salomon, K., Brady, S. S. & Allen, M. T. Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosom. Med. 65, 410–415 (2003).

    PubMed  Article  Google Scholar 

  48. 48.

    Wood, D. L., Sheps, S. G., Elveback, L. R. & Schirger, A. Cold pressor test as a predictor of hypertension. Hypertension 6, 301–306 (1984).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Dikecligil, G. N. & Mujica-Parodi, L. R. Ambulatory and challenge-associated heart rate variability measures predict cardiac responses to real-world acute emotional stress. Biol. Psychiatry 67, 1185–1190 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Gerin, W. et al. An historical context for behavioral models of hypertension. J. Psychosom. Res. 48, 369–377 (2000).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Carroll, D. et al. Blood pressure reactions to acute psychological stress and future blood pressure status: a 10-year follow-up of men in the whitehall II study. Psychosom. Med. 63, 737–743 (2001).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kamarck, T. W. & Lovallo, W. R. Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom. Med. 65, 9–21 (2003).

    PubMed  Article  Google Scholar 

  53. 53.

    Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E. & Weiss, R. Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology 43, 46–56 (2006).

    PubMed  Article  Google Scholar 

  54. 54.

    Bailey, T., Shahabi, L., Tarvainen, M., Shapiro, D. & Ottaviani, C. Moderating effects of the valence of social interaction on the dysfunctional consequences of perseverative cognition: an ecological study in major depression and social anxiety disorder. Anxiety, Stress Coping 32, 179–195 (2019).

    CAS  Article  Google Scholar 

  55. 55.

    Walsh, R. N. & Cummins, R. A. The open-field test: a critical review. Psychol. Bull. 83, 482–504 (1976).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Crawley, J. N. Exploratory behavior models of anxiety in mice. Neurosci. Biobehav. Rev. 9, 37–44 (1985).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Deacon, R. M. J. The successive alleys test of anxiety in mice and rats. J. Vis. Exp. 2013, 2705 (2013).

  58. 58.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996).

    Article  Google Scholar 

  59. 59.

    Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).

    Article  Google Scholar 

  60. 60.

    Chalmers, J. A., Quintana, D. S., Abbott, M. J. A. & Kemp, A. H. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psychiatry 5, 1–11 (2014).

    Article  Google Scholar 

  61. 61.

    Williams, D. P. et al. Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis. Front. Hum. Neurosci. 11, 1–10 (2018).

    Google Scholar 

  62. 62.

    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (2016).

  63. 63.

    Bergstra, J., Yamins, D. & Cox, D. D. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. 30th International Confeence Machine Learning 28, 115–123 (2013).

    Google Scholar 

  64. 64.

    Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 2017-Decem, 4766–4775 (2017).

    Google Scholar 

  65. 65.

    Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    PubMed  Article  Google Scholar 

  66. 66.

    Nasca, C., Davis, E., Bigio, B., Sandi, C. & McEwen, B. S. Effects of Stress Throughout the Lifespan on the Brain and Behavior. In Hormones, Brain and Behavior. 3rd edn (eds. Pfaff, D. W. & Joëls, M.) 5, 443–463 (Academic Press, 2017).

  67. 67.

    Cruz, A. P. M., Frei, F. & Graeff, F. G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol. Biochem. Behav. 49, 171–176 (1994).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Rodgers, R. J. & Johnson, N. J. T. Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol. Biochem. Behav. 52, 297–303 (1995).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Stedenfeld, K. A. et al. Novelty-seeking behavior predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210–216 (2011).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Kallai, J. et al. Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21–30 (2007).

    PubMed  Article  Google Scholar 

  71. 71.

    Friedman, B. H. & Thayer, J. F. Autonomic balance revisited: panic anxiety and HRV. J. Psychosom. Res. 44, 133–151 (1998).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Thayer, J. F., Friedman, B. H. & Borkovec, T. D. Autonomic characteristics of generalized anxiety disorder and worry. Biol. Psychiatry 39, 255–266 (1996).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Goette, L., Bendahan, S., Thoresen, J., Hollis, F. & Sandi, C. Stress pulls us apart: anxiety leads to differences in competitive confidence under stress. Psychoneuroendocrinology 54, 115–123 (2015).

    PubMed  Article  Google Scholar 

  74. 74.

    Perry, W. et al. A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66, 1072–1080 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Walz, N., Mühlberger, A. & Pauli, P. A human open field test reveals thigmotaxis related to agoraphobic fear. Biol. Psychiatry 80, 390–397 (2016).

    PubMed  Article  Google Scholar 

  76. 76.

    Biedermann, S. V. et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 15, 125 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Forkosh, O. et al. Identity domains capture individual differences from across the behavioral repertoire. Nat. Neurosci. 22, 2023–2028 (2019).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Abbas, W. & Rodo, D. M. Computer methods for automatic locomotion and gesture tracking in mice and small animals for neuroscience applications: a survey. Sensors (Switzerland) 19, 3274 (2019).

  79. 79.

    Robie, A. A. et al. Mapping the neural substrates of behavior. Cell 170, 393–406 (2017). e28.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl. Acad. Sci. USA 111, 16136–16141 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  81. 81.

    Chen, R. J. et al. MicroRNAs as biomarkers of resilience or vulnerability to stress. Neuroscience 305, 36–48 (2015).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Swartz, J. R., Knodt, A. R., Radtke, S. R. & Hariri, A. R. A neural biomarker of psychological vulnerability to future life stress. Neuron 85, 505–511 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Georgiou, K. et al. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. (Plovdiv.). 60, 7–20 (2018).

    PubMed  Google Scholar 

  84. 84.

    Jeyhani, V., Mahdiani, S., Peltokangas, M. & Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 5952–5955 (2015).

    PubMed  Google Scholar 

  85. 85.

    Stumpf, P. S. et al. Mapping biology from mouse to man using transfer learning. bioRxiv https://doi.org/10.1101/2019.12.26.888842 (2019).

  86. 86.

    Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The’Trier Social Stress Test’–a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Huzard, D. et al. Low vagal tone in two rat models of psychopathology involving high or low corticosterone stress responses. Psychoneuroendocrinology 101, 101–110 (2019).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Sprager, S. & Juric, M. B. Inertial sensor-based gait recognition: a review. Sensors (Switzerland) 15, 22089–22127 (2015).

  90. 90.

    Hsu, C. Y., Hristov, R., Lee, G. H., Zhao, M. & Katabi, D. Enabling identification and behavioral sensing in homes using radio reflections. CHI Conference on Human Factors in Computing Systems Proceedings. 1–13 (2019)

  91. 91.

    Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI). 4–26 (Consulting Psychologists Press, Palo Alto, CA, 1983).

  92. 92.

    Schubert, T. The sense of presence in virtual environments: a three-component scale measuring spatial presence, involvement, and realness. Z. f.ür. Medienpsychol. 15, 69–71 (2003).

    Article  Google Scholar 

  93. 93.

    Dickerson, S. S. & Kemeny, M. E. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130, 355–391 (2004).

    PubMed  Article  Google Scholar 

  94. 94.

    Dedovic, K. et al. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J. Psychiatry Neurosci. 30, 319–325 (2005).

    PubMed  Google Scholar 

  95. 95.

    Veit, R. et al. Deficient fear conditioning in psychopathy as a function of interpersonal and affective disturbances. Front. Hum. Neurosci. 7, 1–12 (2013).

    Article  Google Scholar 

  96. 96.

    Schmitz, A. & Grillon, C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat. Protoc. 7, 527–532 (2012).

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Vytal, K. E., Overstreet, C., Charney, D. R., Robinson, O. J. & Grillon, C. Sustained anxiety increases amygdala-dorsomedial prefrontal coupling: A mechanism for maintaining an anxious state in healthy adults. J. Psychiatry Neurosci. 39, 321–329 (2014).

    PubMed  Article  Google Scholar 

  98. 98.

    Chénéchal, M. Le & Goldman, J. C. HTC Vive Pro Time Performance Benchmark for Scientific Research. International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments. 81–84 (2018).

  99. 99.

    GG, B. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 (1997).

    Article  Google Scholar 

  100. 100.

    Koenig, J., Williams, D. P., Kemp, A. H. & Thayer, J. F. Vagally mediated heart rate variability in headache patients - a systematic review and meta-analysis. Cephalalgia 36, 265–278 (2016).

    PubMed  Article  Google Scholar 

  101. 101.

    Vouros, A. et al. A generalised framework for detailed classification of swimming paths inside the Morris Water Maze. Sci. Rep. 8, 1–15 (2018).

    CAS  Article  Google Scholar 

  102. 102.

    Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J. & Gifford, E. M. Extreme gradient boosting as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 56, 2353–2360 (2016).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Gao, C. et al. Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson’s disease. Sci. Rep. 8, 1–21 (2018).

    ADS  Article  CAS  Google Scholar 

  104. 104.

    Nishio, M. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS ONE 13, 1–13 (2018).

    Google Scholar 

  105. 105.

    Qiao, Z. et al. Using machine learning approaches for emergency room visit prediction based on electronic health record data. Stud. Health Technol. Inform. 247, 111–115 (2018).

    PubMed  Google Scholar 

  106. 106.

    Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    相关新闻

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel