欢迎来到国际知识中心
Infrared nanospectroscopy reveals the molecular interaction fingerprint of an aggregation inhibitor with single Aβ42 oligomers
  1. 1.

    Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Alzheimers Dement. 8, 131–168 (2012).

  2. 2.

    Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Selkoe, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Haass, C. X. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Bieschke, J. Natural compounds may open new routes to treatment of amyloid diseases. Neurotherapeutics 10, 429–439 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Chen, J. X. & Yan, S. S. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis. 20(Suppl 2), S569–S578 (2010).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kroth, H. et al. Discovery and structure activity relationship of small molecule inhibitors of toxic beta-amyloid-42 fibril formation. J. Biol. Chem. 287, 34786–34800 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    Nie, Q., Du, X. G. & Geng, M. Y. Small molecule inhibitors of amyloid beta peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin. 32, 545–551 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37 (2006).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Sinha, S. et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 133, 16958–16969 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Cummings, J. & Zhong, K. Biomarker-driven therapeutic management of alzheimer’s disease: establishing the foundations. Clin. Pharmacol. Ther. 95, 67–77 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Selkoe, D. J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 17, 1060–1065 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Arosio, P., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci. 35, 127–135 (2014).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Butterfield, S. & Lashuel, H. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew. Chem. Int. Ed. 49, 5628–5654 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147 (2010).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Mannini, B. et al. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 9, 2309–2317 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Shankar, G. M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Walsh, P., Neudecker, P. & Sharpe, S. Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126). J. Am. Chem. Soc. 132, 7684–7695 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Habchi, J. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Sci. Adv. 2, e1501244 (2016).

  22. 22.

    Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. 23.

    Scheidt, T. et al. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci. Adv. 5, eaau3112 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Ruggeri, F. S. et al. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6, 7831 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Muller, T. et al. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 14, 1315–1319 (2014).

    PubMed  Article  Google Scholar 

  27. 27.

    Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ruggeri, F. S. et al. Identification of oxidative stress in red blood cells with nanoscale chemical resolution by infrared nanospectroscopy. Int. J. Mol. Sci. 19, 2582 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. 29.

    Volpatti, L. R. et al. Micro- and nanoscale hierarchical structure of core-shell protein microgels. J. Mater. Chem. B 4, 7989–7999 (2016).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ruggeri, F. S. et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 6, 31155 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ruggeri, F. S. et al. Concentration-dependent and surface-assisted self-assembly properties of a bioactive estrogen receptor alpha-derived peptide. J. Pept. Sci. 21, 95–104 (2015).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Centrone, A. in Annual Review of Analytical Chemistry Vol 8. (eds Cooks, R. G. & Pemberton, J. E.) 101–126 (Annual Reviews, 2015).

  34. 34.

    Galante, D. et al. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J. Biochem. Cell Biol. 79, 261–270 (2016).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ruggeri, F. S., Habchi, J., Cerreta, A. & Dietler, G. AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr. Pharm. Des. 22, 3950–3970 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Ramer, G., Ruggeri, F. S., Levin, A., Knowles, T. P. J. & Centrone, A. Determination of polypeptide conformation with nanoscale resolution in water. ACS Nano 12, 6612–6619 (2018).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lu, F., Jin, M. Z. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 8, 307–312 (2014).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid beta-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. Acs Chem. Neurosci. 1, 13–18 (2010).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Chia, S. et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc. Natl Acad. Sci. USA 115, 10245–10250 (2018).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zanjani, A. A. H. et al. Amyloid evolution: antiparallel replaced by parallel. Biophys. J. 118, 2526–2536 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Habchi, J. et al. Cholesterol catalyses Abeta42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat. Chem. 10, 673–683 (2018).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Okada, Y. et al. Toxic amyloid tape: a novel mixed antiparallel/parallel β-sheet structure formed by amyloid β-protein on GM1 clusters. ACS Chem. Neurosci. 10, 563–572 (2019).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Moran, S. D. & Zanni, M. T. How to get insight into amyloid structure and formation from infrared spectroscopy. J. Phys. Chem. Lett. 5, 1984–1993 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Michaels, T. C. T. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 445–451 (2020).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Abrosimova, K. V., Shulenina, O. V. & Paston, S. V. FTIR study of secondary structure of bovine serum albumin and ovalbumin. J. Phys. Conf. Ser. 769, 12016 (2016).

    Article  CAS  Google Scholar 

  47. 47.

    Nie, B., Stutzman, J. & Xie, A. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 88, 2833–2847 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Mirza, Z. & Beg, M. A. Possible molecular interactions of bexarotene—a retinoid drug and Alzheimer’s Aβ peptide: a docking study. Curr. Alzheimer Res. 14, 327–334 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Patrick, G. L. An Introduction to Medicinal Chemistry (Oxford University Press, 2017).

  50. 50.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Miller, M. S., Ferrato, M.-A., Niec, A., Biesinger, M. C. & Carmichael, T. B. Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience. Langmuir 30, 14171–14178 (2014).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ruggeri, F. S., Sneideris, T., Chia, S., Vendruscolo, M. & Knowles, T. P. J. Characterizing individual protein aggregates by infrared nanospectroscopy and atomic force microscopy. J. Vis. Exp. https://doi.org/10.3791/60108 (2019).

  53. 53.

    Ramer, G., Reisenbauer, F., Steindl, B., Tomischko, W. & Lendl, B. Implementation of resonance tracking for assuring reliability in resonance enhanced photothermal infrared spectroscopy and imaging. Appl. Spectrosc. 71, 2013–2020 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  54. 54.

    Shimanovich, U. et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat. Commun. 8, 15902 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Alzheimers Dement. 8, 131–168 (2012).

  2. 2.

    Knowles, T. P. J., Vendruscolo, M. & Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Selkoe, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Haass, C. X. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6.

    Bieschke, J. Natural compounds may open new routes to treatment of amyloid diseases. Neurotherapeutics 10, 429–439 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Chen, J. X. & Yan, S. S. Role of mitochondrial amyloid-beta in Alzheimer’s disease. J. Alzheimers Dis. 20(Suppl 2), S569–S578 (2010).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kroth, H. et al. Discovery and structure activity relationship of small molecule inhibitors of toxic beta-amyloid-42 fibril formation. J. Biol. Chem. 287, 34786–34800 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Lansbury, P. T. & Lashuel, H. A. A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443, 774–779 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    Nie, Q., Du, X. G. & Geng, M. Y. Small molecule inhibitors of amyloid beta peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol. Sin. 32, 545–551 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37 (2006).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Sinha, S. et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 133, 16958–16969 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Cummings, J. & Zhong, K. Biomarker-driven therapeutic management of alzheimer’s disease: establishing the foundations. Clin. Pharmacol. Ther. 95, 67–77 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Selkoe, D. J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 17, 1060–1065 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Arosio, P., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol. Sci. 35, 127–135 (2014).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Butterfield, S. & Lashuel, H. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew. Chem. Int. Ed. 49, 5628–5654 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Campioni, S. et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat. Chem. Biol. 6, 140–147 (2010).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Mannini, B. et al. Toxicity of protein oligomers is rationalized by a function combining size and surface hydrophobicity. ACS Chem. Biol. 9, 2309–2317 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Shankar, G. M. et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Walsh, P., Neudecker, P. & Sharpe, S. Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126). J. Am. Chem. Soc. 132, 7684–7695 (2010).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Habchi, J. et al. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer’s disease. Sci. Adv. 2, e1501244 (2016).

  22. 22.

    Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  23. 23.

    Scheidt, T. et al. Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci. Adv. 5, eaau3112 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Ruggeri, F. S. et al. Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6, 7831 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Muller, T. et al. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 14, 1315–1319 (2014).

    PubMed  Article  Google Scholar 

  27. 27.

    Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Ruggeri, F. S. et al. Identification of oxidative stress in red blood cells with nanoscale chemical resolution by infrared nanospectroscopy. Int. J. Mol. Sci. 19, 2582 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. 29.

    Volpatti, L. R. et al. Micro- and nanoscale hierarchical structure of core-shell protein microgels. J. Mater. Chem. B 4, 7989–7999 (2016).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Ruggeri, F. S. et al. Nanoscale studies link amyloid maturity with polyglutamine diseases onset. Sci. Rep. 6, 31155 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Ruggeri, F. S. et al. Concentration-dependent and surface-assisted self-assembly properties of a bioactive estrogen receptor alpha-derived peptide. J. Pept. Sci. 21, 95–104 (2015).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Centrone, A. in Annual Review of Analytical Chemistry Vol 8. (eds Cooks, R. G. & Pemberton, J. E.) 101–126 (Annual Reviews, 2015).

  34. 34.

    Galante, D. et al. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. Int J. Biochem. Cell Biol. 79, 261–270 (2016).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Ruggeri, F. S., Habchi, J., Cerreta, A. & Dietler, G. AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr. Pharm. Des. 22, 3950–3970 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Ramer, G., Ruggeri, F. S., Levin, A., Knowles, T. P. J. & Centrone, A. Determination of polypeptide conformation with nanoscale resolution in water. ACS Nano 12, 6612–6619 (2018).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lu, F., Jin, M. Z. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 8, 307–312 (2014).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Ruggeri, F. S., Mannini, B., Schmid, R., Vendruscolo, M. & Knowles, T. P. J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 11, 2945 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Hellstrand, E., Boland, B., Walsh, D. M. & Linse, S. Amyloid beta-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. Acs Chem. Neurosci. 1, 13–18 (2010).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Chia, S. et al. SAR by kinetics for drug discovery in protein misfolding diseases. Proc. Natl Acad. Sci. USA 115, 10245–10250 (2018).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Zanjani, A. A. H. et al. Amyloid evolution: antiparallel replaced by parallel. Biophys. J. 118, 2526–2536 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Habchi, J. et al. Cholesterol catalyses Abeta42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nat. Chem. 10, 673–683 (2018).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Okada, Y. et al. Toxic amyloid tape: a novel mixed antiparallel/parallel β-sheet structure formed by amyloid β-protein on GM1 clusters. ACS Chem. Neurosci. 10, 563–572 (2019).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Moran, S. D. & Zanni, M. T. How to get insight into amyloid structure and formation from infrared spectroscopy. J. Phys. Chem. Lett. 5, 1984–1993 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Michaels, T. C. T. et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat. Chem. 12, 445–451 (2020).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Abrosimova, K. V., Shulenina, O. V. & Paston, S. V. FTIR study of secondary structure of bovine serum albumin and ovalbumin. J. Phys. Conf. Ser. 769, 12016 (2016).

    Article  CAS  Google Scholar 

  47. 47.

    Nie, B., Stutzman, J. & Xie, A. A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys. J. 88, 2833–2847 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Mirza, Z. & Beg, M. A. Possible molecular interactions of bexarotene—a retinoid drug and Alzheimer’s Aβ peptide: a docking study. Curr. Alzheimer Res. 14, 327–334 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Patrick, G. L. An Introduction to Medicinal Chemistry (Oxford University Press, 2017).

  50. 50.

    Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Miller, M. S., Ferrato, M.-A., Niec, A., Biesinger, M. C. & Carmichael, T. B. Ultrasmooth gold surfaces prepared by chemical mechanical polishing for applications in nanoscience. Langmuir 30, 14171–14178 (2014).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Ruggeri, F. S., Sneideris, T., Chia, S., Vendruscolo, M. & Knowles, T. P. J. Characterizing individual protein aggregates by infrared nanospectroscopy and atomic force microscopy. J. Vis. Exp. https://doi.org/10.3791/60108 (2019).

  53. 53.

    Ramer, G., Reisenbauer, F., Steindl, B., Tomischko, W. & Lendl, B. Implementation of resonance tracking for assuring reliability in resonance enhanced photothermal infrared spectroscopy and imaging. Appl. Spectrosc. 71, 2013–2020 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  54. 54.

    Shimanovich, U. et al. Silk micrococoons for protein stabilisation and molecular encapsulation. Nat. Commun. 8, 15902 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    相关新闻

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel