欢迎来到国际知识中心
Modulating electron density of vacancy site by single Au atom for effective CO 2 photoreduction
  1. 1.

    Yi, Q., Li, W., Feng, J. & Xie, K. Carbon cycle in advanced coal chemical engineering. Chem. Soc. Rev. 44, 5409–5445 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Zhao, Y. et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Hao, L. et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019).

    Article  CAS  Google Scholar 

  6. 6.

    Chen, F. et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 32, 1908350 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Hu, C., et al. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 30, 1908168 (2019).

    Article  CAS  Google Scholar 

  8. 8.

    Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Kim, W., Seok, T. & Choi, W. Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energ. Environ. Sci. 5, 6066–6070 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Cao, Y. et al. B-O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Appl. Mater. Inter. 12, 9935–9943 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  CAS  Google Scholar 

  13. 13.

    Liam, H. F. & Andersson, G. G. Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 32, 1904122 (2020).

    Article  CAS  Google Scholar 

  14. 14.

    Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Yan, Q. et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Zhu, W. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 8, 15291 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ghuman, K. K. et al. Photoexcited surface frustrated lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Wang, S., Guan, B. Y., Lu, Y. & Lou, X. W. D. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139, 17305–17308 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Cheng, L., Xiang, Q., Liao, Y. & Zhang, H. CdS-based photocatalysts. Energ. Environ. Sci. 11, 1362–1391 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, K., Kim, W., Ma, M., Shi, X. & Park, J. H. Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J. Mater. Chem. A 3, 4803–4810 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Jin, J., Yu, J., Liu, G. & Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 1, 10927–10934 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Sankar, M. et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 120, 3890–3938 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  CAS  Google Scholar 

  25. 25.

    Ishida, T., Murayama, T., Taketoshi, A. & Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 120, 464–525 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Taylor, A. L., Filipovich, G. & Lindeberg, G. K. Identification of Cd vacancies in neutron-irradiated CdS by electron paramagnetic resonance. Solid State Commun. 9, 945–947 (1971).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Cavenett, B. C. Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Nakaoka, Y. & Nosaka, Y. Electron spin resonance study of radicals produced on irradiated CdS powder. J. Am. Chem. Soc. 99, 9893–9897 (1995).

    CAS  Google Scholar 

  29. 29.

    O’Keefe, M. et al. Sub-angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215–241 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Wei, Y. et al. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B: Environ. 179, 422–432 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Wei, Y. et al. 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A 3, 11074–11085 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Cai, S., Zhang, M., Li, J., Chen, J. & Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Sol. RRL 5, 2000313 (2021).

    CAS  Article  Google Scholar 

  33. 33.

    Jiao, X. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Dong, C. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Zhu, Z. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 14, 81–90 (2021).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, P., Wang, S., Guan, B. Y. & Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energ. Environ. Sci. 12, 164–168 (2019).

    CAS  Google Scholar 

  37. 37.

    Zhou, M., Wang, S., Yang, P., Huang, C. & Wang, X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 8, 4928–4936 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Zhao, G. et al. Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Appl. Catal. B: Environ. 226, 252–257 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Baltrusaitis, J., Schuttlefield, J., Zeitler, E. & Grassian, V. H. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170, 471–481 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Ulagappan, N. & Frei, H. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR Spectroscopy. J. Phys. Chem. A 104, 7834–7839 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, T. et al. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 9, 50–60 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Yates, J. T. & Cavanagh, R. R. Search for chemisorbed HCO: the interaction of formaldehyde, glyoxal, and atomic hydrogen+CO with Rh. J. Catal. 74, 97–109 (1982).

    CAS  Article  Google Scholar 

  43. 43.

    Ewing, G. E., Thompson, W. E. & Pimentel, G. C. Infrared detection of the formyl radical HCO. J. Chem. Phys. 32, 927–932 (1960).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Wu, J. & Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 4, 120–126 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    Smith, M. L., Kumar, N. & Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C. 116, 7931–7939 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Yu, Y. et al. Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: an in situ DRIFT study. Ind. Eng. Chem. Res. 53, 16229–16234 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Xu, W., He, H. & Yu, Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem. C. 113, 4426–4432 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Wu, Q., Gao, H. & He, H. Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibration spectra. J. Phys. Chem. B 110, 8320–8324 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Shimizu, K.-i, Higashimata, T., Tsuzuki, M. & Satsuma, A. Effect of hydrogen addition on SO2 tolerance of silver-alumina for SCR of NO with propane. J. Catal. 239, 117–124 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    Sheng, H. et al. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 140, 4363–4371 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Cao, Y. et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation. ACS Appl. Mater. Inter. 12, 34432–34440 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Guo, L. et al. Promoting charge carriers transfer of Co-S bonds in Co/CdS for enhanced photocatalytic CO2 reduction. Chin. Sci. Bull. 65, 522-532 (2019).

    Google Scholar 

Original Text (This is the original text for your reference.)

  1. 1.

    Yi, Q., Li, W., Feng, J. & Xie, K. Carbon cycle in advanced coal chemical engineering. Chem. Soc. Rev. 44, 5409–5445 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Shi, R. et al. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 11, 3028 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Zhao, Y. et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 48, 1972–2010 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Hao, L. et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 31, 1900546 (2019).

    Article  CAS  Google Scholar 

  6. 6.

    Chen, F. et al. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 32, 1908350 (2020).

    CAS  Article  Google Scholar 

  7. 7.

    Hu, C., et al. Coupling piezocatalysis and photocatalysis in Bi4NbO8X (X = Cl, Br) polar single crystals. Adv. Funct. Mater. 30, 1908168 (2019).

    Article  CAS  Google Scholar 

  8. 8.

    Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Kim, W., Seok, T. & Choi, W. Nafion layer-enhanced photosynthetic conversion of CO2 into hydrocarbons on TiO2 nanoparticles. Energ. Environ. Sci. 5, 6066–6070 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Cao, Y. et al. B-O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Appl. Mater. Inter. 12, 9935–9943 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  CAS  Google Scholar 

  13. 13.

    Liam, H. F. & Andersson, G. G. Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru. Adv. Mater. 32, 1904122 (2020).

    Article  CAS  Google Scholar 

  14. 14.

    Fang, S. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Yan, Q. et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun. 10, 4977 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Zhu, W. et al. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis. Nat. Commun. 8, 15291 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ghuman, K. K. et al. Photoexcited surface frustrated lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Wang, S., Guan, B. Y., Lu, Y. & Lou, X. W. D. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 139, 17305–17308 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Cheng, L., Xiang, Q., Liao, Y. & Zhang, H. CdS-based photocatalysts. Energ. Environ. Sci. 11, 1362–1391 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, K., Kim, W., Ma, M., Shi, X. & Park, J. H. Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J. Mater. Chem. A 3, 4803–4810 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Jin, J., Yu, J., Liu, G. & Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 1, 10927–10934 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Sankar, M. et al. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 120, 3890–3938 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Wan, J. et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 30, 1705369 (2018).

    Article  CAS  Google Scholar 

  25. 25.

    Ishida, T., Murayama, T., Taketoshi, A. & Haruta, M. Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes. Chem. Rev. 120, 464–525 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Taylor, A. L., Filipovich, G. & Lindeberg, G. K. Identification of Cd vacancies in neutron-irradiated CdS by electron paramagnetic resonance. Solid State Commun. 9, 945–947 (1971).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Cavenett, B. C. Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Nakaoka, Y. & Nosaka, Y. Electron spin resonance study of radicals produced on irradiated CdS powder. J. Am. Chem. Soc. 99, 9893–9897 (1995).

    CAS  Google Scholar 

  29. 29.

    O’Keefe, M. et al. Sub-angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215–241 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Wei, Y. et al. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion. Appl. Catal. B: Environ. 179, 422–432 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Wei, Y. et al. 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A 3, 11074–11085 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Cai, S., Zhang, M., Li, J., Chen, J. & Jia, H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Sol. RRL 5, 2000313 (2021).

    CAS  Article  Google Scholar 

  33. 33.

    Jiao, X. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 139, 18044–18051 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Dong, C. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Zhu, Z. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 14, 81–90 (2021).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, P., Wang, S., Guan, B. Y. & Lou, X. W. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energ. Environ. Sci. 12, 164–168 (2019).

    CAS  Google Scholar 

  37. 37.

    Zhou, M., Wang, S., Yang, P., Huang, C. & Wang, X. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 8, 4928–4936 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Zhao, G. et al. Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Appl. Catal. B: Environ. 226, 252–257 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Baltrusaitis, J., Schuttlefield, J., Zeitler, E. & Grassian, V. H. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem. Eng. J. 170, 471–481 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    Ulagappan, N. & Frei, H. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR Spectroscopy. J. Phys. Chem. A 104, 7834–7839 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, T. et al. Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect. Nano Energy 9, 50–60 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Yates, J. T. & Cavanagh, R. R. Search for chemisorbed HCO: the interaction of formaldehyde, glyoxal, and atomic hydrogen+CO with Rh. J. Catal. 74, 97–109 (1982).

    CAS  Article  Google Scholar 

  43. 43.

    Ewing, G. E., Thompson, W. E. & Pimentel, G. C. Infrared detection of the formyl radical HCO. J. Chem. Phys. 32, 927–932 (1960).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Wu, J. & Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 4, 120–126 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    Liu, Y., Chen, S., Quan, X. & Yu, H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137, 11631–11636 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    Smith, M. L., Kumar, N. & Spivey, J. J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS. J. Phys. Chem. C. 116, 7931–7939 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Yu, Y. et al. Promotive effect of SO2 on the activity of a deactivated commercial selective catalytic reduction catalyst: an in situ DRIFT study. Ind. Eng. Chem. Res. 53, 16229–16234 (2014).

    CAS  Article  Google Scholar 

  49. 49.

    Xu, W., He, H. & Yu, Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J. Phys. Chem. C. 113, 4426–4432 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Wu, Q., Gao, H. & He, H. Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibration spectra. J. Phys. Chem. B 110, 8320–8324 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Shimizu, K.-i, Higashimata, T., Tsuzuki, M. & Satsuma, A. Effect of hydrogen addition on SO2 tolerance of silver-alumina for SCR of NO with propane. J. Catal. 239, 117–124 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    Sheng, H. et al. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 140, 4363–4371 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Cao, Y. et al. Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation. ACS Appl. Mater. Inter. 12, 34432–34440 (2020).

    CAS  Article  Google Scholar 

  54. 54.

    Guo, L. et al. Promoting charge carriers transfer of Co-S bonds in Co/CdS for enhanced photocatalytic CO2 reduction. Chin. Sci. Bull. 65, 522-532 (2019).

    Google Scholar 

Comments

    Something to say?

    Log in or Sign up for free

    Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
    Translate engine
    Article's language
    English
    中文
    Pусск
    Français
    Español
    العربية
    Português
    Kikongo
    Dutch
    kiswahili
    هَوُسَ
    IsiZulu
    Action
    相关新闻

    Report

    Select your report category*



    Reason*



    By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

    Submit
    Cancel