Welcome to the IKCEST
Journal
ISA Transactions®

ISA Transactions®

Archives Papers: 1,635
Elsevier
Please choose volume & issue:
Robust controller design of the integrated direct drive volume control architecture for steering systems
Wei Shen; Yu Pang; Jihai Jiang;
Abstracts:Recently, much effort has been directed toward the large throttling loss and low efficiency of the valve control system widely applied in steering system of ships. This paper presents an Integrated Direct-Drive Volume Control (IDDVC) electro-hydraulic servo system with the advantages of high efficiency and energy conservation. Firstly, the simulation model of IDDVC is improved by software AMESim, including the nonlinear interaction of the motor-pump and the oil supply ignored by traditional transfer function model. Then, by establishing discrete state equations, a controller based on robust sliding control strategy has been designed to enhance the practicality and real-time performance. Finally, the accuracy of the model and the effectiveness of the controller are proved through the experiments which are conducted after constructing the IDDVC prototype.
Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships
Andre A. Silva; Shalabh Gupta; Ali M. Bazzi; Arthur Ulatowski;
Abstracts:Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures.
Underwater terrain-aided navigation system based on combination matching algorithm
Peijuan Li; Guoliang Sheng; Xiaofei Zhang; Jingqiu Wu; Baochun Xu; Xing Liu; Yao Zhang;
Abstracts:Considering that the terrain-aided navigation (TAN) system based on iterated closest contour point (ICCP) algorithm diverges easily when the indicative track of strapdown inertial navigation system (SINS) is large, Kalman filter is adopted in the traditional ICCP algorithm, difference between matching result and SINS output is used as the measurement of Kalman filter, then the cumulative error of the SINS is corrected in time by filter feedback correction, and the indicative track used in ICCP is improved. The mathematic model of the autonomous underwater vehicle (AUV) integrated into the navigation system and the observation model of TAN is built. Proper matching point number is designated by comparing the simulation results of matching time and matching precision. Simulation experiments are carried out according to the ICCP algorithm and the mathematic model. It can be concluded from the simulation experiments that the navigation accuracy and stability are improved with the proposed combinational algorithm in case that proper matching point number is engaged. It will be shown that the integrated navigation system is effective in prohibiting the divergence of the indicative track and can meet the requirements of underwater, long-term and high precision of the navigation system for autonomous underwater vehicles.
Reliability-based robust dynamic positioning for a turret-moored floating production storage and offloading vessel with unknown time-varying disturbances and input saturation
Yuanhui Wang; Yulong Tuo; Simon X. Yang; Mohammad Biglarbegian; Mingyu Fu;
Abstracts:In this paper, we derived a mathematical model for a floating production storage and offloading (FPSO) vessel and its buoy mooring system and developed a new robust positioning controller to keep vessels in a desired region in the presence of unknown time-varying disturbances with uncertainties and input saturation. Different materials (chain and polyester) and buoys are considered in the model of mooring system to make the developed model more realistic. We employed a disturbance observer to estimate the disturbances and designed an auxiliary dynamic system integrated with the structural reliability's derivative to quantify the input saturation's influence, and its states are used to the control design. Our proposed controller can keep the structural reliability and heading at desired values with arbitrarily small errors while guaranteeing the uniform ultimate boundedness of all signals in the closed-loop control system. It is easier for the control design because disturbances and input saturation are handled simultaneously and so is the stability analysis because only one Lyapunov function is needed. Simulations are conducted to demonstrate our proposed controller's effectiveness and a comparison with a robust controller based on hyperbolic tangent functions shows our proposed controller can avoid steady errors with desired control goals.
Active disturbance rejection controller design for dynamically positioned vessels based on adaptive hybrid biogeography-based optimization and differential evolution
Defeng Wu; Fengkun Ren; Lei Qiao; Weidong Zhang;
Abstracts:Vessels with a dynamic positioning system (DPS) are widely applied in ocean resource exploration. Because of the inaccuracy and coupling of the vessel dynamic model, it is important to design a controller that performs well in an oceanic environment. The active disturbance rejection controller (ADRC) is introduced in this study to control the vessel movement and positioning in the DPS. The merit of the ADRC is that it does not need an accurate plant and disturbance model. In the proposed method, an adaptive hybrid biogeography-based optimization (BBO) and differential evolution (DE) are developed. The orthogonal learning (OL) mechanism is employed to achieve adaptive switching to different searching mechanisms between BBO and DE. The proposed adaptive hybrid BBO-DE (AHBBODE) algorithm is then used to optimize the parameters of ADRC; these parameters are not easy to determine by using the trial and error method. Finally, the proposed method is compared with the BBO- and DE-based methods. The results show that better performance is obtained by the proposed method.
A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network
Huafeng Wu; Xiaojun Mei; Xinqiang Chen; Junjun Li; Jun Wang; Prasant Mohapatra;
Abstracts:Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model—Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired
Reachable set estimation for Takagi-Sugeno fuzzy systems against unknown output delays with application to tracking control of AUVs
Zhixiong Zhong; Yanzheng Zhu; Choon Ki Ahn;
Abstracts:In this paper, we address the problem of reachable set estimation for continuous-time Takagi-Sugeno (T-S) fuzzy systems subject to unknown output delays. Based on the reachable set concept, a new controller design method is also discussed for such systems. An effective method is developed to attenuate the negative impact from the unknown output delays, which likely degrade the performance/stability of systems. First, an augmented fuzzy observer is proposed to capacitate a synchronous estimation for the system state and the disturbance term owing to the unknown output delays, which ensures that the reachable set of the estimation error is limited via the intersection operation of ellipsoids. Then, a compensation technique is employed to eliminate the influence on the system performance stemmed from the unknown output delays. Finally, the effectiveness and correctness of the obtained theories are verified by the tracking control of autonomous underwater vehicles.
Dynamic surface fault tolerant control for underwater remotely operated vehicles
Alessandro Baldini; Lucio Ciabattoni; Riccardo Felicetti; Francesco Ferracuti; Alessandro Freddi; Andrea Monteriù;
Abstracts:In this paper, we present a two stages actuator Fault Tolerant Control (FTC) strategy for the trajectory tracking of a Remotely Operated Vehicle (ROV). Dynamic Surface Control (DSC) is used to generate the moment and forces required by the vehicle to perform the desired motion. In the second stage of the control system, a fault tolerant thruster allocation policy is employed to distribute moment and forces among the thrusters. Exhaustive simulations have been carried out in order to compare the performance of the proposed solution with respect to different control techniques (i.e., PID, backstepping and sliding mode approaches). Saturations, actuator dynamics, sensor noises and time discretization are considered, in fault-free and faulty conditions. Furthermore, in order to provide a fair and exhaustive comparison of the control techniques, the same meta-heuristic approach, namely Artificial Bee Colony algorithm (ABC), has been employed to tune the controllers parameters.
Fault detection for piecewise affine systems with application to ship propulsion systems
Ying Yang; Li Linlin; Steven X. Ding; Jianbin Qiu; Kaixiang Peng;
Abstracts:In this paper, the design approach of non-synchronized diagnostic observer-based fault detection (FD) systems is investigated for piecewise affine processes via continuous piecewise Lyapunov functions. Considering that the dynamics of piecewise affine systems in different regions can be considerably different, the weighting matrices are used to weight the residual of each region, so as to optimize the fault detectability. A numerical example and a case study on a ship propulsion system are presented in the end to demonstrate the effectiveness of the proposed results.
Advanced Methods in Control and Signal Processing for Complex Marine Systems
Hamid Reza Karimi; Hui Zhang; Steven Ding;
Hot Journals