Welcome to the IKCEST

Mikrobiologiia | Vol.82, Issue.6 | | Pages 732-40

Mikrobiologiia

[Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

S é, Belova I Iu, Oshkin M V, Glagolev E D, Lapshina Sh Sh, Maksiutov S N, Dedysh  
Abstract

Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

Original Text (This is the original text for your reference.)

[Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps.

+More

Cite this article
APA

APA

MLA

Chicago

S é, Belova I Iu, Oshkin M V, Glagolev E D, Lapshina Sh Sh, Maksiutov S N, Dedysh,.[Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].. 82 (6),732-40.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel