Welcome to the IKCEST

The Journal of heredity | Vol.96, Issue.4 | | Pages 410-6

The Journal of heredity

Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species.

J J, Wassom P J, Tranel  
Abstract

Weedy Amaranthus species frequently cause economically significant reductions in crop yields. Accurate identification of Amaranthus species is important for efficient weed control, but Amaranthus species can interbreed, which might cause difficulty when identifying hybrid-derived specimens. To determine which of several economically important weedy Amaranthus species are most genetically similar, and thus most likely to produce viable hybrids, we performed amplified fragment length polymorphism (AFLP)-based unweighted pair group method with arithmetic mean (UPGMA) analysis on 8 of these species, with 141 specimens representing 98 accessions. The analysis grouped the specimens into four principal clusters composed of Palmer amaranth (Amaranthus palmeri S. Wats.) and spiny amaranth (Amaranthus spinosus L.); Powell amaranth (Amaranthus powellii S. Wats.), redroot pigweed (Amaranthus retroflexus L.), and smooth pigweed (Amaranthus hybridus L.); waterhemp (Amaranthus tuberculatus (Moq.) Sauer) and sandhills amaranth (Amaranthus arenicola I.M. Johnst.); and tumble pigweed (Amaranthus albus L.). The cluster analysis provided evidence suggesting hybridization among Powell amaranth, redroot pigweed, and smooth pigweed. Further investigations using molecular analysis of the ribosomal internal transcribed spacer region from atypical plants supported this notion. Three species, Palmer amaranth, sandhills amaranth, and waterhemp, are dioecious; nevertheless, the Palmer amaranth and waterhemp-sandhills amaranth clusters were distinct from each other. The Palmer amaranth-spiny amaranth cluster included a cluster of Palmer amaranth and two clusters of spiny amaranth, a monoecious species. Thus the dioecious species Palmer amaranth and waterhemp may not necessarily hybridize with each other more readily than they would to one or more of the monoecious Amaranthus species.

Original Text (This is the original text for your reference.)

Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species.

Weedy Amaranthus species frequently cause economically significant reductions in crop yields. Accurate identification of Amaranthus species is important for efficient weed control, but Amaranthus species can interbreed, which might cause difficulty when identifying hybrid-derived specimens. To determine which of several economically important weedy Amaranthus species are most genetically similar, and thus most likely to produce viable hybrids, we performed amplified fragment length polymorphism (AFLP)-based unweighted pair group method with arithmetic mean (UPGMA) analysis on 8 of these species, with 141 specimens representing 98 accessions. The analysis grouped the specimens into four principal clusters composed of Palmer amaranth (Amaranthus palmeri S. Wats.) and spiny amaranth (Amaranthus spinosus L.); Powell amaranth (Amaranthus powellii S. Wats.), redroot pigweed (Amaranthus retroflexus L.), and smooth pigweed (Amaranthus hybridus L.); waterhemp (Amaranthus tuberculatus (Moq.) Sauer) and sandhills amaranth (Amaranthus arenicola I.M. Johnst.); and tumble pigweed (Amaranthus albus L.). The cluster analysis provided evidence suggesting hybridization among Powell amaranth, redroot pigweed, and smooth pigweed. Further investigations using molecular analysis of the ribosomal internal transcribed spacer region from atypical plants supported this notion. Three species, Palmer amaranth, sandhills amaranth, and waterhemp, are dioecious; nevertheless, the Palmer amaranth and waterhemp-sandhills amaranth clusters were distinct from each other. The Palmer amaranth-spiny amaranth cluster included a cluster of Palmer amaranth and two clusters of spiny amaranth, a monoecious species. Thus the dioecious species Palmer amaranth and waterhemp may not necessarily hybridize with each other more readily than they would to one or more of the monoecious Amaranthus species.

+More

Cite this article
APA

APA

MLA

Chicago

J J, Wassom P J, Tranel,.Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species.. 96 (4),410-6.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel