Welcome to the IKCEST

Bioconjugate chemistry | Vol.8, Issue.1 | | Pages 64-70

Bioconjugate chemistry

Optimization of conditions for formation and analysis of anti-CD19 FVS191 single-chain Fv homodimer (scFv')2.

D, Wang E, Berven Q, Li F, Uckun J H, Kersey  
Abstract

In this report, we present the production of a dimeric form of anti-CD19 scFv, the FVS191cys (scFv')2. Anti-CD19 scFv FVS191cys was constructed by engineering a cysteine residue at the C terminus of the V1, domain of scFv FVS191. FVS191cys (scFv')2 was formed through a disulfide bond between two FVS191cys molecules. To optimize the yield of FVS191cys (scFv')2, the effects of oxidation time, buffer pH, and temperature on the formation of dimeric scFv were analyzed. Our study indicates that the formation of FVS191cys (scFv')2 is oxidation time- and buffer pH-dependent; a high pH buffer facilitates the formation of disulfide-linked (scFv')2. The maximum yield of FVS191cys (scFv')2 can be achieved when FVS191cys is air-oxidized at 4 degrees C, in buffer with a pH of 8.5-9. The biological activity of FVS191cys (scFv')2 was analyzed by ELISA and an internalization assay. FVS191cys (scFv')2 has a CD19 binding ability similar to that of its parental mAb B43 and is internalized by CD19 positive Nalm 6 cells. This study indicates that FVS191cys (scFv')2 is a potential candidate for tumor diagnosis or therapy.

Original Text (This is the original text for your reference.)

Optimization of conditions for formation and analysis of anti-CD19 FVS191 single-chain Fv homodimer (scFv')2.

In this report, we present the production of a dimeric form of anti-CD19 scFv, the FVS191cys (scFv')2. Anti-CD19 scFv FVS191cys was constructed by engineering a cysteine residue at the C terminus of the V1, domain of scFv FVS191. FVS191cys (scFv')2 was formed through a disulfide bond between two FVS191cys molecules. To optimize the yield of FVS191cys (scFv')2, the effects of oxidation time, buffer pH, and temperature on the formation of dimeric scFv were analyzed. Our study indicates that the formation of FVS191cys (scFv')2 is oxidation time- and buffer pH-dependent; a high pH buffer facilitates the formation of disulfide-linked (scFv')2. The maximum yield of FVS191cys (scFv')2 can be achieved when FVS191cys is air-oxidized at 4 degrees C, in buffer with a pH of 8.5-9. The biological activity of FVS191cys (scFv')2 was analyzed by ELISA and an internalization assay. FVS191cys (scFv')2 has a CD19 binding ability similar to that of its parental mAb B43 and is internalized by CD19 positive Nalm 6 cells. This study indicates that FVS191cys (scFv')2 is a potential candidate for tumor diagnosis or therapy.

+More

Cite this article
APA

APA

MLA

Chicago

D, Wang E, Berven Q, Li F, Uckun J H, Kersey,.Optimization of conditions for formation and analysis of anti-CD19 FVS191 single-chain Fv homodimer (scFv')2.. 8 (1),64-70.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel