Welcome to the IKCEST

Information and Control | Vol.1, Issue.2 | | Pages 91-112

Information and Control

Finite state languages

Noam Chomsky and George A. Miller  
Abstract

A finite state language is a finite or infinite set of strings (sentences) of symbols (words) generated by a finite set of rules (the grammar), where each rule specifies the state of the system in which it can be applied, the symbol which is generated, and the state of the system after the rule is applied. A number of equivalent descriptions of finite state languages are explored. A simple structural characterization theorem for finite state languages is established, based on the cyclical structure of the grammar. It is shown that the complement of any finite state language formed on a given vocabulary of symbols is also a finite state language, and that the union of any two finite state languages formed on a given vocabulary is a finite state language; i.e., the set of all finite state languages that can be formed on a given vocabulary is a Boolean algebra. Procedures for calculating the number of grammatical strings of any given length are also described.

Original Text (This is the original text for your reference.)

Finite state languages

A finite state language is a finite or infinite set of strings (sentences) of symbols (words) generated by a finite set of rules (the grammar), where each rule specifies the state of the system in which it can be applied, the symbol which is generated, and the state of the system after the rule is applied. A number of equivalent descriptions of finite state languages are explored. A simple structural characterization theorem for finite state languages is established, based on the cyclical structure of the grammar. It is shown that the complement of any finite state language formed on a given vocabulary of symbols is also a finite state language, and that the union of any two finite state languages formed on a given vocabulary is a finite state language; i.e., the set of all finite state languages that can be formed on a given vocabulary is a Boolean algebra. Procedures for calculating the number of grammatical strings of any given length are also described.

+More

Cite this article
APA

APA

MLA

Chicago

Noam Chomsky and George A. Miller,.Finite state languages. 1 (2),91-112.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel