Welcome to the IKCEST

Mathematical Methods in the Applied Sciences | Vol.40, Issue.8 | | Pages 3139-3129

Mathematical Methods in the Applied Sciences

An isogeometric discontinuous Galerkin method for Euler equations

Shengjiao Yu   Tiegang Liu   Renzhong Feng  
Abstract

An isogeometric discontinuous Galerkin method for Euler equations is proposed. It integrates the idea of isogeometric analysis with the discontinuous Galerkin framework by constructing each element through the knots insertion and degree elevation techniques in non-uniform rational B-splines. This leads to the solution inherently shares the same function space as the non-uniform rational B-splines representation, and results in that the curved boundaries as well as the interfaces between neighboring elements are naturally and exactly resolved. Additionally, the computational cost is reduced in contrast to that of structured grid generation. Numerical tests demonstrate that the presented method can be high order of accuracy and flexible in handling curved geometry. Copyright © 2016 John Wiley & Sons, Ltd.

Original Text (This is the original text for your reference.)

An isogeometric discontinuous Galerkin method for Euler equations

An isogeometric discontinuous Galerkin method for Euler equations is proposed. It integrates the idea of isogeometric analysis with the discontinuous Galerkin framework by constructing each element through the knots insertion and degree elevation techniques in non-uniform rational B-splines. This leads to the solution inherently shares the same function space as the non-uniform rational B-splines representation, and results in that the curved boundaries as well as the interfaces between neighboring elements are naturally and exactly resolved. Additionally, the computational cost is reduced in contrast to that of structured grid generation. Numerical tests demonstrate that the presented method can be high order of accuracy and flexible in handling curved geometry. Copyright © 2016 John Wiley & Sons, Ltd.

+More

Cite this article
APA

APA

MLA

Chicago

Shengjiao Yu, Tiegang Liu, Renzhong Feng,.An isogeometric discontinuous Galerkin method for Euler equations. 40 (8),3139-3129.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel