Welcome to the IKCEST

Electronics Letters | Vol.52, Issue.24 | | Pages 1988-1990

Electronics Letters

Traffic sign recognition based on weighted ELM and AdaBoost

Quanwei Wang   Yan Xu   Zhenyu Wei   Shuo Ma  
Abstract

A novel multiclass AdaBoost-based extreme learning machine (ELM) ensemble algorithm is proposed, in which the weighted ELM is selected as the basic weak classifier because of its much faster learning speed and much better generalisation performance than traditional support vector machines. AdaBoost acts as an ensemble learning method of a number of weighted ELMs. Then, an ensemble strong classifier is constructed by the weighted majority vote of all the weighted ELMs. Compared with the existing ELM methods, the proposed algorithm solves the problem of how to train the weighted samples by ELM in multiclass classification directly. Experiments on the German Traffic Sign Recognition Benchmark database demonstrate that the proposed algorithm can achieve a high recognition accuracy of 99.12% with a relatively lower computational complexity than many state-of-the-art algorithms.

Original Text (This is the original text for your reference.)

Traffic sign recognition based on weighted ELM and AdaBoost

A novel multiclass AdaBoost-based extreme learning machine (ELM) ensemble algorithm is proposed, in which the weighted ELM is selected as the basic weak classifier because of its much faster learning speed and much better generalisation performance than traditional support vector machines. AdaBoost acts as an ensemble learning method of a number of weighted ELMs. Then, an ensemble strong classifier is constructed by the weighted majority vote of all the weighted ELMs. Compared with the existing ELM methods, the proposed algorithm solves the problem of how to train the weighted samples by ELM in multiclass classification directly. Experiments on the German Traffic Sign Recognition Benchmark database demonstrate that the proposed algorithm can achieve a high recognition accuracy of 99.12% with a relatively lower computational complexity than many state-of-the-art algorithms.

+More

Cite this article
APA

APA

MLA

Chicago

Quanwei Wang,Yan Xu, Zhenyu Wei, Shuo Ma,.Traffic sign recognition based on weighted ELM and AdaBoost. 52 (24),1988-1990.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel