Welcome to the IKCEST

Geofluids | Vol.2019, Issue. | | Pages

Geofluids

Experimental Study of Water Infiltration in Unsaturated Horizontal Sand Columns under Various Air Confinement Conditions

Meng Chen,Zhifang Zhou,Brent Sleep,Xingxing Kuang,Li Mingwei,Anchi Shi  
Abstract

The process of water infiltration into initially dry sand was studied in horizontal sand columns under various airtight conditions. To investigate the interrelations among water inflow behavior, air pressure, air confinement effect, and vent effectiveness in unsaturated porous media experiencing dynamic infiltration, a total of five dynamic infiltration experiments with fixed inlet water pressure were performed with different air vents open or closed along the column length. Visualizations of the infiltration process were accompanied by measurements of water saturation, air pressure, and accumulated water inflow. In a column system with an open end, the absence of air pressure buildup reveals that the vent at the column end can significantly reduce the internal air pressure effects during infiltration, and the air phase can be ignored for this case. However, in columns with a tight end, the coupled air and water flow processes can be divided into two completely different periods. Before the water front passed by the most distant open vent, the internal air pressure effects on retarding dynamic infiltration are negligible, similar to the open end case. After this period, the open vents can certainly influence the inflow behavior by functioning as air outlets while they cannot equilibrate pore air pressure with the atmospheric pressure. The remaining air ahead of the front will be gradually confined and compressed, and the significant increase in air pressure highlights the great role of air pressure buildup in reducing the water infiltration rate. The closer the last open vent was to the water inlet, the higher was the increase in air pressure and the greater was the delaying effect on water infiltration. This work may extend the experimental study of water infiltration into the unsaturated soils with different airtight conditions and provide experimental evidence on these coupled mechanisms among the water and air phases in soils.

Original Text (This is the original text for your reference.)

Experimental Study of Water Infiltration in Unsaturated Horizontal Sand Columns under Various Air Confinement Conditions

The process of water infiltration into initially dry sand was studied in horizontal sand columns under various airtight conditions. To investigate the interrelations among water inflow behavior, air pressure, air confinement effect, and vent effectiveness in unsaturated porous media experiencing dynamic infiltration, a total of five dynamic infiltration experiments with fixed inlet water pressure were performed with different air vents open or closed along the column length. Visualizations of the infiltration process were accompanied by measurements of water saturation, air pressure, and accumulated water inflow. In a column system with an open end, the absence of air pressure buildup reveals that the vent at the column end can significantly reduce the internal air pressure effects during infiltration, and the air phase can be ignored for this case. However, in columns with a tight end, the coupled air and water flow processes can be divided into two completely different periods. Before the water front passed by the most distant open vent, the internal air pressure effects on retarding dynamic infiltration are negligible, similar to the open end case. After this period, the open vents can certainly influence the inflow behavior by functioning as air outlets while they cannot equilibrate pore air pressure with the atmospheric pressure. The remaining air ahead of the front will be gradually confined and compressed, and the significant increase in air pressure highlights the great role of air pressure buildup in reducing the water infiltration rate. The closer the last open vent was to the water inlet, the higher was the increase in air pressure and the greater was the delaying effect on water infiltration. This work may extend the experimental study of water infiltration into the unsaturated soils with different airtight conditions and provide experimental evidence on these coupled mechanisms among the water and air phases in soils.

+More

Cite this article
APA

APA

MLA

Chicago

Meng Chen,Zhifang Zhou,Brent Sleep,Xingxing Kuang,Li Mingwei,Anchi Shi,.Experimental Study of Water Infiltration in Unsaturated Horizontal Sand Columns under Various Air Confinement Conditions. 2019 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel