Welcome to the IKCEST

Scientific Reports | Vol.8, Issue.1 | | Pages

Scientific Reports

Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing

  
Abstract

Abstract The rockpool shrimp Palaemon elegans is considered an important crustacean species within the European coastline fauna. This species is experiencing an ongoing geographical expansion beyond its native distribution range due to unintentional human introductions. A better knowledge of the genetic diversity, geographic structure and connectivity of its populations is necessary. In the present study, microsatellite loci were isolated using the Illumina MiSeq platform. The microsatellite-enriched library sequencing produced 3.9 million raw reads. Reads were processed and primer pairs were designed for microsatellite sequences amplification. Ninety-six microsatellite loci were preliminary screened in individuals from Atlantic and Mediterranean localities. From them, 21 loci exhibited reliable polymorphism and were thoroughly characterized in 30 individuals from a Cantabrian locality (Spain). No linkage disequilibrium between pairs of loci was detected. Number of alleles per locus ranged from 2 to 12. Observed and expected heterozygosities ranged from 0.033 to 0.833 and from 0.033 to 0.869 respectively. No significant departure from the Hardy-Weinberg equilibrium was detected in most of loci. This is the first time that microsatellite markers have been developed for P. elegans. This characterized microsatellite suite provides new suitable tools for further analyses, facilitating the understanding of population genetics both in natural and introduced populations.

Original Text (This is the original text for your reference.)

Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing

Abstract The rockpool shrimp Palaemon elegans is considered an important crustacean species within the European coastline fauna. This species is experiencing an ongoing geographical expansion beyond its native distribution range due to unintentional human introductions. A better knowledge of the genetic diversity, geographic structure and connectivity of its populations is necessary. In the present study, microsatellite loci were isolated using the Illumina MiSeq platform. The microsatellite-enriched library sequencing produced 3.9 million raw reads. Reads were processed and primer pairs were designed for microsatellite sequences amplification. Ninety-six microsatellite loci were preliminary screened in individuals from Atlantic and Mediterranean localities. From them, 21 loci exhibited reliable polymorphism and were thoroughly characterized in 30 individuals from a Cantabrian locality (Spain). No linkage disequilibrium between pairs of loci was detected. Number of alleles per locus ranged from 2 to 12. Observed and expected heterozygosities ranged from 0.033 to 0.833 and from 0.033 to 0.869 respectively. No significant departure from the Hardy-Weinberg equilibrium was detected in most of loci. This is the first time that microsatellite markers have been developed for P. elegans. This characterized microsatellite suite provides new suitable tools for further analyses, facilitating the understanding of population genetics both in natural and introduced populations.

+More

Cite this article
APA

APA

MLA

Chicago

,.Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing. 8 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel