Welcome to the IKCEST

Advanced Functional Materials | Vol.26, Issue.44 | | Pages 8118-8111

Advanced Functional Materials

Nanodroplets for Stretchable Superconducting Circuits

Gilberto Casillas   Long Ren   Xun Xu   Yundan Liu   Haifeng Feng   Jun Chen   Shi Xue Dou   Yi Du   Lei Jiang   Jincheng Zhuang   Yuqing Liu  
Abstract

The prospective utilization of nanoscale superconductors as micro/nanocoils or circuits with superior current density and no electrical resistance loss in next-generation electronics or electromagnetic equipment represents a fascinating opportunity for new microsystem technologies. Here, a family of superconducting liquid metals (Ga–In–Sn alloys) and their nanodroplets toward printable and stretchable superconducting micro/nanoelectronics is developed. By tuning the composition of liquid metals the highest superconducting critical temperature (Tc) in this family can be modulated and achieved as high as 6.6 K. The liquid metal nanodroplets retain their bulk superconducting properties and can be easily dispersed in different solvents as inks. The printable and stretchable superconducting micro/nano coils, circuits and electrodes have been fabricated by inkjet printer or laser etching by using superconducting nanodroplets inks. This novel superconducting system greatly promotes the commercial utilization of superconductors into advanced flexible micro/nanoelectronic devices and offers a new platform for developing more application with superconductors. Superconducting eutectic gallium–indium–tin (EGaInSn) alloys and their nanosized droplets with different weight ratios are developed for realizing printable and stretchable superconducting circuits. The highest superconducting critical temperature of EGaInSn is 6.6 K. The corresponding EGaInSn nanodroplets retain the bulk superconducting properties. Their dispersion in various solvents shows excellent wettability, which can be easily applied to print stretchable superconductive micro/nanoelectronics.

Original Text (This is the original text for your reference.)

Nanodroplets for Stretchable Superconducting Circuits

The prospective utilization of nanoscale superconductors as micro/nanocoils or circuits with superior current density and no electrical resistance loss in next-generation electronics or electromagnetic equipment represents a fascinating opportunity for new microsystem technologies. Here, a family of superconducting liquid metals (Ga–In–Sn alloys) and their nanodroplets toward printable and stretchable superconducting micro/nanoelectronics is developed. By tuning the composition of liquid metals the highest superconducting critical temperature (Tc) in this family can be modulated and achieved as high as 6.6 K. The liquid metal nanodroplets retain their bulk superconducting properties and can be easily dispersed in different solvents as inks. The printable and stretchable superconducting micro/nano coils, circuits and electrodes have been fabricated by inkjet printer or laser etching by using superconducting nanodroplets inks. This novel superconducting system greatly promotes the commercial utilization of superconductors into advanced flexible micro/nanoelectronic devices and offers a new platform for developing more application with superconductors. Superconducting eutectic gallium–indium–tin (EGaInSn) alloys and their nanosized droplets with different weight ratios are developed for realizing printable and stretchable superconducting circuits. The highest superconducting critical temperature of EGaInSn is 6.6 K. The corresponding EGaInSn nanodroplets retain the bulk superconducting properties. Their dispersion in various solvents shows excellent wettability, which can be easily applied to print stretchable superconductive micro/nanoelectronics.

+More

Cite this article
APA

APA

MLA

Chicago

Gilberto Casillas,Long Ren, Xun Xu, Yundan Liu, Haifeng Feng, Jun Chen, Shi Xue Dou, Yi Du, Lei Jiang, Jincheng Zhuang, Yuqing Liu,.Nanodroplets for Stretchable Superconducting Circuits. 26 (44),8118-8111.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel