Welcome to the IKCEST

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | Vol.35, Issue.12 | | Pages 2046-2055

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

Geometric Pattern Match Using Edge Driven Dissected Rectangles and Vector Space

Jea Woo Park  
Abstract

In this paper, we propose novel algorithms for pattern matching which dissects patterns into rectangles based on polygon edges. Unlike other design rule check (DRC)-based pattern matching algorithms, our solution utilizes simple DRC edge length rules to create rectangles for hotspot pattern descriptions. This approach has at least three advantages over other solutions. First, it is faster than other state-of-the-art pattern matching tools. Second, it is intuitive and simple for pattern matching engineers to understand and describe patterns. Third, it scales well for parallel computation. We also show how to improve pattern matching run time using vector space created by an origin rectangle and other reference rectangles inside a pattern bounding box. By adopting the vector concept, we iterate only once or twice when detecting different pattern orientations. Other pattern matching techniques usually iterate eight times (4 rotations × 2 mirrored images) to detect all of the eight different orientations. Our method eliminates these unnecessary iterations.

Original Text (This is the original text for your reference.)

Geometric Pattern Match Using Edge Driven Dissected Rectangles and Vector Space

In this paper, we propose novel algorithms for pattern matching which dissects patterns into rectangles based on polygon edges. Unlike other design rule check (DRC)-based pattern matching algorithms, our solution utilizes simple DRC edge length rules to create rectangles for hotspot pattern descriptions. This approach has at least three advantages over other solutions. First, it is faster than other state-of-the-art pattern matching tools. Second, it is intuitive and simple for pattern matching engineers to understand and describe patterns. Third, it scales well for parallel computation. We also show how to improve pattern matching run time using vector space created by an origin rectangle and other reference rectangles inside a pattern bounding box. By adopting the vector concept, we iterate only once or twice when detecting different pattern orientations. Other pattern matching techniques usually iterate eight times (4 rotations × 2 mirrored images) to detect all of the eight different orientations. Our method eliminates these unnecessary iterations.

+More

Cite this article
APA

APA

MLA

Chicago

Jea Woo Park,.Geometric Pattern Match Using Edge Driven Dissected Rectangles and Vector Space. 35 (12),2046-2055.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel