Welcome to the IKCEST

Remote Sensing | Vol.11, Issue.20 | | Pages

Remote Sensing

A Novel Hyperspectral Image Simulation Method Based on Nonnegative Matrix Factorization

Zehua Huang,Qi Chen,Qihao Chen,Xiuguo Liu,Hao He  
Abstract

Hyperspectral (HS) images can provide abundant and fine spectral information on land surface. However, their applications may be limited by their narrow bandwidth and small coverage area. In this paper, we propose an HS image simulation method based on nonnegative matrix factorization (NMF), which aims at generating HS images using existing multispectral (MS) data. Our main novelty is proposing a spectral transformation matrix and new simulation method. First, we develop a spectral transformation matrix that transforms HS endmembers into MS endmembers. Second, we utilize an iteration scheme to optimize the HS and MS endmembers. The test MS image is then factorized by the MS endmembers to obtain the abundance matrix. The result image is constructed by multiplying the abundance matrix by the HS endmembers. Experiments prove that our method provides high spectral quality by combining prior spectral endmembers. The iteration schemes reduce the simulation error and improve the accuracy of the results. In comparative trials, the spectral angle, RMSE, and correlation coefficient of our method are 5.986, 284.6, and 0.905, respectively. Thus, our method outperforms other simulation methods.

Original Text (This is the original text for your reference.)

A Novel Hyperspectral Image Simulation Method Based on Nonnegative Matrix Factorization

Hyperspectral (HS) images can provide abundant and fine spectral information on land surface. However, their applications may be limited by their narrow bandwidth and small coverage area. In this paper, we propose an HS image simulation method based on nonnegative matrix factorization (NMF), which aims at generating HS images using existing multispectral (MS) data. Our main novelty is proposing a spectral transformation matrix and new simulation method. First, we develop a spectral transformation matrix that transforms HS endmembers into MS endmembers. Second, we utilize an iteration scheme to optimize the HS and MS endmembers. The test MS image is then factorized by the MS endmembers to obtain the abundance matrix. The result image is constructed by multiplying the abundance matrix by the HS endmembers. Experiments prove that our method provides high spectral quality by combining prior spectral endmembers. The iteration schemes reduce the simulation error and improve the accuracy of the results. In comparative trials, the spectral angle, RMSE, and correlation coefficient of our method are 5.986, 284.6, and 0.905, respectively. Thus, our method outperforms other simulation methods.

+More

Cite this article
APA

APA

MLA

Chicago

Zehua Huang,Qi Chen,Qihao Chen,Xiuguo Liu,Hao He,.A Novel Hyperspectral Image Simulation Method Based on Nonnegative Matrix Factorization. 11 (20),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel