Nanophotonics | Vol.8, Issue.8 | | Pages
Topologically protected broadband rerouting of propagating waves around complex objects
Achieving robust propagation and guiding of electromagnetic waves through complex and disordered structures is a major goal of modern photonics research, for both classical and quantum applications. Although the realization of backscattering-free and disorder-immune guided waves has recently become possible through various photonic schemes inspired by topological insulators in condensed matter physics, the interaction between such topologically protected guided waves and free-space propagating waves remains mostly unexplored, especially in the context of scattering systems. Here, we theoretically demonstrate that free-space propagating plane waves can be efficiently coupled into topological one-way surface waves, which can seamlessly flow around sharp corners and electrically large barriers and release their energy back into free space in the form of leaky-wave radiation. We exploit this physical mechanism to realize topologically protected wave-rerouting around an electrically large impenetrable object of complex shape, with transmission efficiency exceeding 90%, over a relatively broad bandwidth. The proposed topological wave-rerouting scheme is based on a stratified structure composed of a topologically nontrivial magnetized plasmonic material coated by a suitable isotropic layer. Our results may open a new avenue in the field of topological photonics and electromagnetics, for applications that require engineered interactions between guided waves and free-space propagating waves, including for complex beam-routing systems and advanced stealth technology. More generally, our work may pave the way for robust defect/damage-immune scattering and radiating systems.
Original Text (This is the original text for your reference.)
Topologically protected broadband rerouting of propagating waves around complex objects
Achieving robust propagation and guiding of electromagnetic waves through complex and disordered structures is a major goal of modern photonics research, for both classical and quantum applications. Although the realization of backscattering-free and disorder-immune guided waves has recently become possible through various photonic schemes inspired by topological insulators in condensed matter physics, the interaction between such topologically protected guided waves and free-space propagating waves remains mostly unexplored, especially in the context of scattering systems. Here, we theoretically demonstrate that free-space propagating plane waves can be efficiently coupled into topological one-way surface waves, which can seamlessly flow around sharp corners and electrically large barriers and release their energy back into free space in the form of leaky-wave radiation. We exploit this physical mechanism to realize topologically protected wave-rerouting around an electrically large impenetrable object of complex shape, with transmission efficiency exceeding 90%, over a relatively broad bandwidth. The proposed topological wave-rerouting scheme is based on a stratified structure composed of a topologically nontrivial magnetized plasmonic material coated by a suitable isotropic layer. Our results may open a new avenue in the field of topological photonics and electromagnetics, for applications that require engineered interactions between guided waves and free-space propagating waves, including for complex beam-routing systems and advanced stealth technology. More generally, our work may pave the way for robust defect/damage-immune scattering and radiating systems.
+More
nontrivial magnetized plasmonic material freespace propagating plane waves topological photonics and electromagnetics topological oneway surface waves stratified structure photonic schemes topological wavererouting scheme robust defectdamageimmune scattering and radiating systems condensed robust propagation and guiding of electromagnetic waves through complex and disordered structures leakywave photonics research topologically protected wavererouting object isotropic complex beamrouting systems insulators stealth classical and quantum applications
APA
MLA
Chicago
Hayran Zeki,Hassani Gangaraj Seyyed Ali,Monticone Francesco,.Topologically protected broadband rerouting of propagating waves around complex objects. 8 (8),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: