Welcome to the IKCEST

Advances in Difference Equations | Vol.2018, Issue.1 | | Pages

Advances in Difference Equations

Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term

Jiahui Hu,Jungang Wang,Yufeng Nie  
Abstract

Abstract Fractional differential equations (FDEs) of distributed-order are important in depicting the models where the order of differentiation distributes over a certain range. Numerically solving this kind of FDEs requires not only discretizations of the temporal and spatial derivatives, but also approximation of the distributed-order integral, which brings much more difficulty. In this paper, based on the mid-point quadrature rule and composite two-point Gauss–Legendre quadrature rule, two finite difference schemes are established. Different from the previous works, which concerned only one- or two-dimensional problems with linear source terms, time-fractional wave equations of distributed-order whose source term is nonlinear in two and even three dimensions are considered. In addition, to improve the computational efficiency, the technique of alternating direction implicit (ADI) decomposition is also adopted. The unique solvability of the difference scheme is discussed, and the unconditional stability and convergence are analyzed. Finally, numerical experiments are carried out to verify the effectiveness and accuracy of the algorithms for both the two- and three-dimensional cases.

Original Text (This is the original text for your reference.)

Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term

Abstract Fractional differential equations (FDEs) of distributed-order are important in depicting the models where the order of differentiation distributes over a certain range. Numerically solving this kind of FDEs requires not only discretizations of the temporal and spatial derivatives, but also approximation of the distributed-order integral, which brings much more difficulty. In this paper, based on the mid-point quadrature rule and composite two-point Gauss–Legendre quadrature rule, two finite difference schemes are established. Different from the previous works, which concerned only one- or two-dimensional problems with linear source terms, time-fractional wave equations of distributed-order whose source term is nonlinear in two and even three dimensions are considered. In addition, to improve the computational efficiency, the technique of alternating direction implicit (ADI) decomposition is also adopted. The unique solvability of the difference scheme is discussed, and the unconditional stability and convergence are analyzed. Finally, numerical experiments are carried out to verify the effectiveness and accuracy of the algorithms for both the two- and three-dimensional cases.

+More

Cite this article
APA

APA

MLA

Chicago

Jiahui Hu,Jungang Wang,Yufeng Nie,.Numerical algorithms for multidimensional time-fractional wave equation of distributed-order with a nonlinear source term. 2018 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel