Welcome to the IKCEST

Energies | Vol.12, Issue.15 | | Pages

Energies

Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm

Jee-Heon Kim,Nam-Chul Seong,Wonchang Choi  
Abstract

This study was conducted to develop an energy consumption model of a chiller in a heating, ventilation, and air conditioning system using a machine learning algorithm based on artificial neural networks. The proposed chiller energy consumption model was evaluated for accuracy in terms of input layers that include the number of input variables, amount (proportion) of training data, and number of neurons. A standardized reference building was also modeled to generate operational data for the chiller system during extended cooling periods (warm weather months). The prediction accuracy of the chiller’s energy consumption was improved by increasing the number of input variables and adjusting the proportion of training data. By contrast, the effect of the number of neurons on the prediction accuracy was insignificant. The developed chiller model was able to predict energy consumption with 99.07% accuracy based on eight input variables, 60% training data, and 12 neurons.

Original Text (This is the original text for your reference.)

Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm

This study was conducted to develop an energy consumption model of a chiller in a heating, ventilation, and air conditioning system using a machine learning algorithm based on artificial neural networks. The proposed chiller energy consumption model was evaluated for accuracy in terms of input layers that include the number of input variables, amount (proportion) of training data, and number of neurons. A standardized reference building was also modeled to generate operational data for the chiller system during extended cooling periods (warm weather months). The prediction accuracy of the chiller’s energy consumption was improved by increasing the number of input variables and adjusting the proportion of training data. By contrast, the effect of the number of neurons on the prediction accuracy was insignificant. The developed chiller model was able to predict energy consumption with 99.07% accuracy based on eight input variables, 60% training data, and 12 neurons.

+More

Cite this article
APA

APA

MLA

Chicago

Jee-Heon Kim,Nam-Chul Seong,Wonchang Choi,.Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm. 12 (15),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel