Welcome to the IKCEST

Sensors | Vol.19, Issue.12 | | Pages

Sensors

Priority-Aware Price-Based Power Control for Co-Located WBANs Using Stackelberg and Bayesian Games

Jingxian Wang,Yongmei Sun,Yuefeng Ji,Shuyun Luo  
Abstract

According to the IEEE 802.15.6 standard, interference within each wireless body area network (WBAN) can be well addressed by the time division multiple access (TDMA)-based media access control (MAC) protocol. However, the inter-WBAN interference will be caused after multiple WBANs are gathered together. This paper proposes a priority-aware price-based power control (PPPC) scheme for mitigating the inter-WBAN interference. Specifically, to maximize the transmission data rate of sensors and control the aggregate interference suffered by coordinators, a Stackelberg game is established, in which the coordinators issue interference prices and the active sensors adjust their transmission power accordingly. On the other hand, since the information about the identities of the active sensors in a specific time slot is kept private, a Bayesian game is designed to model the interaction among sensors. Moreover, the timeliness and reliability of data transmission are guaranteed by designing the sensors’ priority factors and setting a priority-related active probability for each sensor. At last, a power control algorithm is designed to obtain optimal strategies of game players. Simulation results show that compared with other existing schemes, the proposed scheme achieves better fairness with a comparable network sum data rate and is more energy efficient.

Original Text (This is the original text for your reference.)

Priority-Aware Price-Based Power Control for Co-Located WBANs Using Stackelberg and Bayesian Games

According to the IEEE 802.15.6 standard, interference within each wireless body area network (WBAN) can be well addressed by the time division multiple access (TDMA)-based media access control (MAC) protocol. However, the inter-WBAN interference will be caused after multiple WBANs are gathered together. This paper proposes a priority-aware price-based power control (PPPC) scheme for mitigating the inter-WBAN interference. Specifically, to maximize the transmission data rate of sensors and control the aggregate interference suffered by coordinators, a Stackelberg game is established, in which the coordinators issue interference prices and the active sensors adjust their transmission power accordingly. On the other hand, since the information about the identities of the active sensors in a specific time slot is kept private, a Bayesian game is designed to model the interaction among sensors. Moreover, the timeliness and reliability of data transmission are guaranteed by designing the sensors’ priority factors and setting a priority-related active probability for each sensor. At last, a power control algorithm is designed to obtain optimal strategies of game players. Simulation results show that compared with other existing schemes, the proposed scheme achieves better fairness with a comparable network sum data rate and is more energy efficient.

+More

Cite this article
APA

APA

MLA

Chicago

Jingxian Wang,Yongmei Sun,Yuefeng Ji,Shuyun Luo,.Priority-Aware Price-Based Power Control for Co-Located WBANs Using Stackelberg and Bayesian Games. 19 (12),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel