Welcome to the IKCEST

Complexity | Vol.2018, Issue. | | Pages

Complexity

Particle Swarm Optimization Iterative Identification Algorithm and Gradient Iterative Identification Algorithm for Wiener Systems with Colored Noise

Junhong Li,Xiao Li  
Abstract

This paper considers the parameter identification of Wiener systems with colored noise. The difficulty in the identification is that the model is nonlinear and the intermediate variable cannot be measured. Particle swarm optimization is an artificial intelligence evolutionary method and is effective in solving nonlinear optimization problem. In this paper, we obtain the identification model of the Wiener system and then transfer the parameter identification problem into an optimization problem. Then, we derive a particle swarm optimization iterative (PSOI) identification algorithm to identify the unknown parameter of the Wiener system. Furthermore, a gradient iterative identification algorithm is proposed to compare with the particle swarm optimization iterative algorithm. Numerical simulation is carried out to evaluate the performance of the PSOI algorithm and the gradient iterative algorithm. The simulation results indicate that the proposed algorithms are effective and the PSOI algorithm can achieve better performance over the gradient iterative algorithm.

Original Text (This is the original text for your reference.)

Particle Swarm Optimization Iterative Identification Algorithm and Gradient Iterative Identification Algorithm for Wiener Systems with Colored Noise

This paper considers the parameter identification of Wiener systems with colored noise. The difficulty in the identification is that the model is nonlinear and the intermediate variable cannot be measured. Particle swarm optimization is an artificial intelligence evolutionary method and is effective in solving nonlinear optimization problem. In this paper, we obtain the identification model of the Wiener system and then transfer the parameter identification problem into an optimization problem. Then, we derive a particle swarm optimization iterative (PSOI) identification algorithm to identify the unknown parameter of the Wiener system. Furthermore, a gradient iterative identification algorithm is proposed to compare with the particle swarm optimization iterative algorithm. Numerical simulation is carried out to evaluate the performance of the PSOI algorithm and the gradient iterative algorithm. The simulation results indicate that the proposed algorithms are effective and the PSOI algorithm can achieve better performance over the gradient iterative algorithm.

+More

Cite this article
APA

APA

MLA

Chicago

Junhong Li,Xiao Li,.Particle Swarm Optimization Iterative Identification Algorithm and Gradient Iterative Identification Algorithm for Wiener Systems with Colored Noise. 2018 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel