Welcome to the IKCEST

Healthcare Technology Letters | Vol., Issue. | | Pages

Healthcare Technology Letters

Augmenting Microsoft's HoloLens with vuforia tracking for neuronavigation

Taylor Frantz,Bart Jansen,Johnny Duerinck,Jef Vandemeulebroucke  
Abstract

Major hurdles for Microsoft's HoloLens as a tool in medicine have been accessing tracking data, as well as a relatively high-localisation error of the displayed information; cumulatively resulting in its limited use and minimal quantification. The following work investigates the augmentation of HoloLens with the proprietary image processing SDK Vuforia, allowing integration of data from its front-facing RGB camera to provide more spatially stable holograms for neuronavigational use. Continuous camera tracking was able to maintain hologram registration with a mean perceived drift of 1.41 mm, as well as a mean sub 2-mm surface point localisation accuracy of 53%, all while allowing the researcher to walk about a test area. This represents a 68% improvement for the later and a 34% improvement for the former compared with a typical HoloLens deployment used as a control. Both represent a significant improvement on hologram stability given the current state-of-the-art, and to the best of the authors knowledge are the first example of quantified measurements when augmenting hologram stability using data from the RGB sensor.

Original Text (This is the original text for your reference.)

Augmenting Microsoft's HoloLens with vuforia tracking for neuronavigation

Major hurdles for Microsoft's HoloLens as a tool in medicine have been accessing tracking data, as well as a relatively high-localisation error of the displayed information; cumulatively resulting in its limited use and minimal quantification. The following work investigates the augmentation of HoloLens with the proprietary image processing SDK Vuforia, allowing integration of data from its front-facing RGB camera to provide more spatially stable holograms for neuronavigational use. Continuous camera tracking was able to maintain hologram registration with a mean perceived drift of 1.41 mm, as well as a mean sub 2-mm surface point localisation accuracy of 53%, all while allowing the researcher to walk about a test area. This represents a 68% improvement for the later and a 34% improvement for the former compared with a typical HoloLens deployment used as a control. Both represent a significant improvement on hologram stability given the current state-of-the-art, and to the best of the authors knowledge are the first example of quantified measurements when augmenting hologram stability using data from the RGB sensor.

+More

Cite this article
APA

APA

MLA

Chicago

Taylor Frantz,Bart Jansen,Johnny Duerinck,Jef Vandemeulebroucke,.Augmenting Microsoft's HoloLens with vuforia tracking for neuronavigation. (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel