Welcome to the IKCEST

Remote Sensing | Vol.11, Issue.6 | | Pages

Remote Sensing

Domain Transfer Learning for Hyperspectral Image Super-Resolution

Xiaoyan Li,Lefei Zhang,Jane You  
Abstract

A Hyperspectral Image (HSI) contains a great number of spectral bands for each pixel; however, the spatial resolution of HSI is low. Hyperspectral image super-resolution is effective to enhance the spatial resolution while preserving the high-spectral-resolution by software techniques. Recently, the existing methods have been presented to fuse HSI and Multispectral Images (MSI) by assuming that the MSI of the same scene is required with the observed HSI, which limits the super-resolution reconstruction quality. In this paper, a new framework based on domain transfer learning for HSI super-resolution is proposed to enhance the spatial resolution of HSI by learning the knowledge from the general purpose optical images (natural scene images) and exploiting the cross-correlation between the observed low-resolution HSI and high-resolution MSI. First, the relationship between low- and high-resolution images is learned by a single convolutional super-resolution network and then is transferred to HSI by the idea of transfer learning. Second, the obtained Pre-high-resolution HSI (pre-HSI), the observed low-resolution HSI, and high-resolution MSI are simultaneously considered to estimate the endmember matrix and the abundance code for learning the spectral characteristic. Experimental results on ground-based and remote sensing datasets demonstrate that the proposed method achieves comparable performance and outperforms the existing HSI super-resolution methods.

Original Text (This is the original text for your reference.)

Domain Transfer Learning for Hyperspectral Image Super-Resolution

A Hyperspectral Image (HSI) contains a great number of spectral bands for each pixel; however, the spatial resolution of HSI is low. Hyperspectral image super-resolution is effective to enhance the spatial resolution while preserving the high-spectral-resolution by software techniques. Recently, the existing methods have been presented to fuse HSI and Multispectral Images (MSI) by assuming that the MSI of the same scene is required with the observed HSI, which limits the super-resolution reconstruction quality. In this paper, a new framework based on domain transfer learning for HSI super-resolution is proposed to enhance the spatial resolution of HSI by learning the knowledge from the general purpose optical images (natural scene images) and exploiting the cross-correlation between the observed low-resolution HSI and high-resolution MSI. First, the relationship between low- and high-resolution images is learned by a single convolutional super-resolution network and then is transferred to HSI by the idea of transfer learning. Second, the obtained Pre-high-resolution HSI (pre-HSI), the observed low-resolution HSI, and high-resolution MSI are simultaneously considered to estimate the endmember matrix and the abundance code for learning the spectral characteristic. Experimental results on ground-based and remote sensing datasets demonstrate that the proposed method achieves comparable performance and outperforms the existing HSI super-resolution methods.

+More

Cite this article
APA

APA

MLA

Chicago

Xiaoyan Li,Lefei Zhang,Jane You,.Domain Transfer Learning for Hyperspectral Image Super-Resolution. 11 (6),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel