Welcome to the IKCEST

Advances in Meteorology | Vol.2018, Issue. | | Pages

Advances in Meteorology

Assimilation of Doppler Radar Data and Its Impact on Prediction of a Heavy Meiyu Frontal Rainfall Event

Hongli Li,Xiangde Xu,Yang Hu,Yanjiao Xiao,Zhibin Wang  
Abstract

Operational Doppler radar observations have potential advantages over other above-surface observations when it comes to assimilation for mesoscale model simulations with high spatial and temporal resolution. To improve the forecast of a heavy frontal rainfall event that occurred in the Yangtze-Huaihe River Basin from 4 July to 5 July 2014 in China, operational radar observations are assimilated by the Local Analysis and Prediction System (LAPS). Radar reflectivity data are used primarily in the LAPS cloud analysis procedure, which retrieves the number of hydrometeors and adjusts the moisture and cloud fields. Radial velocity data are analyzed through the LAPS wind analysis-based successive correction method. A new correction method is developed to correct three-dimensional radar reflectivity data based on hourly surface rain gauge observations. The performance of the correction method is demonstrated by assimilating radar reflectivity observations into LAPS. Experiments with different radar data assimilation are examined. Results show that the assimilation of radar data can effectively correct the background errors and improve the heavy rainfall forecast. The simulated intensity, pattern, and temporal evolution of the heavy rainfall event are better improved with radar reflectivity assimilation, especially when the correction method is implemented to correct radar observations.

Original Text (This is the original text for your reference.)

Assimilation of Doppler Radar Data and Its Impact on Prediction of a Heavy Meiyu Frontal Rainfall Event

Operational Doppler radar observations have potential advantages over other above-surface observations when it comes to assimilation for mesoscale model simulations with high spatial and temporal resolution. To improve the forecast of a heavy frontal rainfall event that occurred in the Yangtze-Huaihe River Basin from 4 July to 5 July 2014 in China, operational radar observations are assimilated by the Local Analysis and Prediction System (LAPS). Radar reflectivity data are used primarily in the LAPS cloud analysis procedure, which retrieves the number of hydrometeors and adjusts the moisture and cloud fields. Radial velocity data are analyzed through the LAPS wind analysis-based successive correction method. A new correction method is developed to correct three-dimensional radar reflectivity data based on hourly surface rain gauge observations. The performance of the correction method is demonstrated by assimilating radar reflectivity observations into LAPS. Experiments with different radar data assimilation are examined. Results show that the assimilation of radar data can effectively correct the background errors and improve the heavy rainfall forecast. The simulated intensity, pattern, and temporal evolution of the heavy rainfall event are better improved with radar reflectivity assimilation, especially when the correction method is implemented to correct radar observations.

+More

Cite this article
APA

APA

MLA

Chicago

Hongli Li,Xiangde Xu,Yang Hu,Yanjiao Xiao,Zhibin Wang,.Assimilation of Doppler Radar Data and Its Impact on Prediction of a Heavy Meiyu Frontal Rainfall Event. 2018 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel