Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2018, Issue. | | Pages

Mathematical Problems in Engineering

Implementation of Black Box Models for Internal Ballistics Optimization Using an Artificial Neural Network

Jie Chen,JingYin Li,ShuangXi Li,YunXiang You  
Abstract

The process of UUV delivery is a typical nonlinear transient dynamic phenomenon, which is generally described by the internal ballistic model. Evaluation of optimal internal ballistics parameters is a key step for promoting ballistic weapon performance under given launch constraints. Hence, accurate and efficient optimization techniques are required in ballistics technology. In this study, an artificial neural network (ANN) is used to simplify the process of regression analysis. To this end, an internal ballistics model is built in this study as a black box for a classic underwater launching system, such as a torpedo launcher, based on ANN parameter identification. The established black box models are mainly employed to calculate the velocity of a ballistic body and the torque of a launching pump. Typical internal ballistics test data are adopted as samples for training the ANN. Comparative results demonstrate that the developed black box models can accurately reflect changes in internal ballistics parameters according to rotational speed variations. Therefore, the proposed approach can be fruitfully applied to the task of internal ballistics optimization. The optimization of internal ballistics precision control, optimal control of the launching pump, and optimal low-energy launch control were, respectively, realized in conjunction with the established model using the SHERPA search algorithm. The results demonstrate that the optimized internal ballistics rotational speed curve can achieve the optimization objectives of low-energy launch and peak power while meeting the requirements of optimization constraints.

Original Text (This is the original text for your reference.)

Implementation of Black Box Models for Internal Ballistics Optimization Using an Artificial Neural Network

The process of UUV delivery is a typical nonlinear transient dynamic phenomenon, which is generally described by the internal ballistic model. Evaluation of optimal internal ballistics parameters is a key step for promoting ballistic weapon performance under given launch constraints. Hence, accurate and efficient optimization techniques are required in ballistics technology. In this study, an artificial neural network (ANN) is used to simplify the process of regression analysis. To this end, an internal ballistics model is built in this study as a black box for a classic underwater launching system, such as a torpedo launcher, based on ANN parameter identification. The established black box models are mainly employed to calculate the velocity of a ballistic body and the torque of a launching pump. Typical internal ballistics test data are adopted as samples for training the ANN. Comparative results demonstrate that the developed black box models can accurately reflect changes in internal ballistics parameters according to rotational speed variations. Therefore, the proposed approach can be fruitfully applied to the task of internal ballistics optimization. The optimization of internal ballistics precision control, optimal control of the launching pump, and optimal low-energy launch control were, respectively, realized in conjunction with the established model using the SHERPA search algorithm. The results demonstrate that the optimized internal ballistics rotational speed curve can achieve the optimization objectives of low-energy launch and peak power while meeting the requirements of optimization constraints.

+More

Cite this article
APA

APA

MLA

Chicago

Jie Chen,JingYin Li,ShuangXi Li,YunXiang You,.Implementation of Black Box Models for Internal Ballistics Optimization Using an Artificial Neural Network. 2018 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel