Welcome to the IKCEST

Entropy | Vol.21, Issue.4 | | Pages

Entropy

Robust Variable Selection and Estimation Based on Kernel Modal Regression

Changying Guo,Biqin Song,Yingjie Wang,Hong Chen,Huijuan Xiong  
Abstract

Model-free variable selection has attracted increasing interest recently due to its flexibility in algorithmic design and outstanding performance in real-world applications. However, most of the existing statistical methods are formulated under the mean square error (MSE) criterion, and susceptible to non-Gaussian noise and outliers. As the MSE criterion requires the data to satisfy Gaussian noise condition, it potentially hampers the effectiveness of model-free methods in complex circumstances. To circumvent this issue, we present a new model-free variable selection algorithm by integrating kernel modal regression and gradient-based variable identification together. The derived modal regression estimator is related closely to information theoretic learning under the maximum correntropy criterion, and assures algorithmic robustness to complex noise by replacing learning of the conditional mean with the conditional mode. The gradient information of estimator offers a model-free metric to screen the key variables. In theory, we investigate the theoretical foundations of our new model on generalization-bound and variable selection consistency. In applications, the effectiveness of the proposed method is verified by data experiments.

Original Text (This is the original text for your reference.)

Robust Variable Selection and Estimation Based on Kernel Modal Regression

Model-free variable selection has attracted increasing interest recently due to its flexibility in algorithmic design and outstanding performance in real-world applications. However, most of the existing statistical methods are formulated under the mean square error (MSE) criterion, and susceptible to non-Gaussian noise and outliers. As the MSE criterion requires the data to satisfy Gaussian noise condition, it potentially hampers the effectiveness of model-free methods in complex circumstances. To circumvent this issue, we present a new model-free variable selection algorithm by integrating kernel modal regression and gradient-based variable identification together. The derived modal regression estimator is related closely to information theoretic learning under the maximum correntropy criterion, and assures algorithmic robustness to complex noise by replacing learning of the conditional mean with the conditional mode. The gradient information of estimator offers a model-free metric to screen the key variables. In theory, we investigate the theoretical foundations of our new model on generalization-bound and variable selection consistency. In applications, the effectiveness of the proposed method is verified by data experiments.

+More

Cite this article
APA

APA

MLA

Chicago

Changying Guo,Biqin Song,Yingjie Wang,Hong Chen,Huijuan Xiong,.Robust Variable Selection and Estimation Based on Kernel Modal Regression. 21 (4),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel