Welcome to the IKCEST

Materials Science-Poland | Vol.37, Issue.1 | | Pages

Materials Science-Poland

Research on energy absorption properties of open-cell copper foam for current collector of Li-ions

Chen Jian,Li Xiongfei,Li Wei,Li Cong,Xie Baoshan,Dai Shuowei,He Jian-Jun,Ren Yanjie  
Abstract

Quasi-static uniaxial compressive tests of open-cell copper (Cu) foams (OCCF) were carried out on an in-situ bi-direction tension/compress testing machine (IBTC 2000). The effects of strain rate, porosity and pore size on the energy absorption of open-cell copper foams were investigated to reveal the energy absorption mechanism. The results show that three performance parameters of open-cell copper foams (OCCF), involving compressive strength, Young modulus and yield stress, increase simultaneously with an increase of strain rate and reduce with increasing porosity and pore size. Furthermore, the energy absorption capacity of OCCF increases with an increase of porosity and pore size. However, energy absorption efficiency increases with increasing porosity and decreasing pore size. The finite element simulation results show that the two-dimensional stochastic model can predict the energy absorption performance of the foam during the compressive process. The large permanent plastic deformation at the weak edge hole is the main factor that affects the energy absorption.

Original Text (This is the original text for your reference.)

Research on energy absorption properties of open-cell copper foam for current collector of Li-ions

Quasi-static uniaxial compressive tests of open-cell copper (Cu) foams (OCCF) were carried out on an in-situ bi-direction tension/compress testing machine (IBTC 2000). The effects of strain rate, porosity and pore size on the energy absorption of open-cell copper foams were investigated to reveal the energy absorption mechanism. The results show that three performance parameters of open-cell copper foams (OCCF), involving compressive strength, Young modulus and yield stress, increase simultaneously with an increase of strain rate and reduce with increasing porosity and pore size. Furthermore, the energy absorption capacity of OCCF increases with an increase of porosity and pore size. However, energy absorption efficiency increases with increasing porosity and decreasing pore size. The finite element simulation results show that the two-dimensional stochastic model can predict the energy absorption performance of the foam during the compressive process. The large permanent plastic deformation at the weak edge hole is the main factor that affects the energy absorption.

+More

Cite this article
APA

APA

MLA

Chicago

Chen Jian,Li Xiongfei,Li Wei,Li Cong,Xie Baoshan,Dai Shuowei,He Jian-Jun,Ren Yanjie,.Research on energy absorption properties of open-cell copper foam for current collector of Li-ions. 37 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel