Welcome to the IKCEST

Metals | Vol.8, Issue.10 | | Pages

Metals

Application of a GTN Damage Model Predicting the Fracture of 5052-O Aluminum Alloy High-Speed Electromagnetic Impaction

Fei Feng,Jianjun Li,Peng Yuan,Qixian Zhang,Pan Huang,Hongliang Su,Rongchuang Chen  
Abstract

An increasing demand exists within the automotive industry to utilize aluminum alloy sheets because of their excellent strength-weight ratio and low emissions, which can improve fuel economy and reduce environmental pollution. High-speed automobile impactions are complicated and highly nonlinear deformation processes. Thus, in this paper, a Gurson-Tvergaard-Needleman (GTN) damage model is used to describe the damage behavior of high-speed electromagnetic impaction to predict the fracture behavior of 5052-O aluminum alloy under high-speed impaction. The parameters of the GTN damage model are obtained based on high-speed electromagnetic forming experiments via scanning electron microscopy. The high-speed electromagnetic impaction behavior process is analyzed according to the obtained GTN model parameters. The shape of the high-speed electromagnetic impaction in the numerical simulations agrees with the experimental results. The analysis of the plastic strain and void volume fraction distributions are analyzed during the process of high-speed impact, which indicates the validity of using the GTN damage model to describe or predict the fracture behavior of high-speed electromagnetic impaction.

Original Text (This is the original text for your reference.)

Application of a GTN Damage Model Predicting the Fracture of 5052-O Aluminum Alloy High-Speed Electromagnetic Impaction

An increasing demand exists within the automotive industry to utilize aluminum alloy sheets because of their excellent strength-weight ratio and low emissions, which can improve fuel economy and reduce environmental pollution. High-speed automobile impactions are complicated and highly nonlinear deformation processes. Thus, in this paper, a Gurson-Tvergaard-Needleman (GTN) damage model is used to describe the damage behavior of high-speed electromagnetic impaction to predict the fracture behavior of 5052-O aluminum alloy under high-speed impaction. The parameters of the GTN damage model are obtained based on high-speed electromagnetic forming experiments via scanning electron microscopy. The high-speed electromagnetic impaction behavior process is analyzed according to the obtained GTN model parameters. The shape of the high-speed electromagnetic impaction in the numerical simulations agrees with the experimental results. The analysis of the plastic strain and void volume fraction distributions are analyzed during the process of high-speed impact, which indicates the validity of using the GTN damage model to describe or predict the fracture behavior of high-speed electromagnetic impaction.

+More

Cite this article
APA

APA

MLA

Chicago

Fei Feng,Jianjun Li,Peng Yuan,Qixian Zhang,Pan Huang,Hongliang Su,Rongchuang Chen,.Application of a GTN Damage Model Predicting the Fracture of 5052-O Aluminum Alloy High-Speed Electromagnetic Impaction. 8 (10),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel