Welcome to the IKCEST

Abstract and Applied Analysis | Vol.2012, Issue. | | Pages

Abstract and Applied Analysis

An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems

Mohammad Maleki,Ishak Hashim,Majid Tavassoli Kajani,Saeid Abbasbandy  
Abstract

An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP) which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE). By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG) collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.

Original Text (This is the original text for your reference.)

An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems

An adaptive pseudospectral method is presented for solving a class of multiterm fractional boundary value problems (FBVP) which involve Caputo-type fractional derivatives. The multiterm FBVP is first converted into a singular Volterra integrodifferential equation (SVIDE). By dividing the interval of the problem to subintervals, the unknown function is approximated using a piecewise interpolation polynomial with unknown coefficients which is based on shifted Legendre-Gauss (ShLG) collocation points. Then the problem is reduced to a system of algebraic equations, thus greatly simplifying the problem. Further, some additional conditions are considered to maintain the continuity of the approximate solution and its derivatives at the interface of subintervals. In order to convert the singular integrals of SVIDE into nonsingular ones, integration by parts is utilized. In the method developed in this paper, the accuracy can be improved either by increasing the number of subintervals or by increasing the degree of the polynomial on each subinterval. Using several examples including Bagley-Torvik equation the proposed method is shown to be efficient and accurate.

+More

Cite this article
APA

APA

MLA

Chicago

Mohammad Maleki,Ishak Hashim,Majid Tavassoli Kajani,Saeid Abbasbandy,.An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems. 2012 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel