Mobile Information Systems | Vol.2016, Issue. | | Pages
Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access
The expected tremendous growth of machine-to-machine (M2M) devices will require solutions to improve random access channel (RACH) performance. Recent studies have shown that radio access network (RAN) performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay.
Original Text (This is the original text for your reference.)
Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access
The expected tremendous growth of machine-to-machine (M2M) devices will require solutions to improve random access channel (RACH) performance. Recent studies have shown that radio access network (RAN) performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay.
+More
resources physical rach configuration index traffic aggregation points random access channel rach radio access network ran macro base m2m communications access success probability average access delay heterogeneous
APA
MLA
Chicago
Fatemah Alsewaidi,Angela Doufexi,Dritan Kaleshi,.Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access. 2016 (),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: