Welcome to the IKCEST

Meccanica | Vol.51, Issue.8 | | Pages 1763-1770

Meccanica

Numerical treatment for flow and heat transfer of Powell–Eyring fluid over an exponential stretching sheet with variable thermal conductivity

Ahmed M. Megahed   M. M. Khader  
Abstract

This article is devoted to describe the boundary layer flow and heat transfer for non-Newtonian Powell–Eyring fluid over an exponentially stretching continuous impermeable surface with an exponential temperature distribution taking into account variable thermal conductivity. The fluid thermal conductivity is assumed to vary as a linear function of temperature . The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with numerical technique using appropriate boundary conditions for various physical parameters . The numerical solution for the governing non-linear boundary value problem is based on applying Chebyshev spectral method over the entire range of physical parameters. The effects of governing parameters like the thermal conductivity parameter and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are computed and discussed through graphs and tables. In this work, a special attention is given to investigate the effect of the variable thermal conductivity parameter on the temperature field above the stretching sheet.

Original Text (This is the original text for your reference.)

Numerical treatment for flow and heat transfer of Powell–Eyring fluid over an exponential stretching sheet with variable thermal conductivity

This article is devoted to describe the boundary layer flow and heat transfer for non-Newtonian Powell–Eyring fluid over an exponentially stretching continuous impermeable surface with an exponential temperature distribution taking into account variable thermal conductivity. The fluid thermal conductivity is assumed to vary as a linear function of temperature . The governing partial differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with numerical technique using appropriate boundary conditions for various physical parameters . The numerical solution for the governing non-linear boundary value problem is based on applying Chebyshev spectral method over the entire range of physical parameters. The effects of governing parameters like the thermal conductivity parameter and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are computed and discussed through graphs and tables. In this work, a special attention is given to investigate the effect of the variable thermal conductivity parameter on the temperature field above the stretching sheet.

+More

Cite this article
APA

APA

MLA

Chicago

Ahmed M. Megahed,M. M. Khader,.Numerical treatment for flow and heat transfer of Powell–Eyring fluid over an exponential stretching sheet with variable thermal conductivity. 51 (8),1763-1770.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel