Welcome to the IKCEST

Journal of Systems Engineering and Electronics | Vol.30, Issue.2 | | Pages 223-237

Journal of Systems Engineering and Electronics

No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain

Yan JunhuaBai XuehanZhang WanyiXiao YongqiChatwin ChrisYoung RupertBirch Phil  
Abstract

Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment (NR-IQA) method based on the AdaBoost BP neural network in the wavelet domain (WABNN) is proposed. A 36- dimensional image feature vector is constructed by extracting natural scene statistics (NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering (LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.

Original Text (This is the original text for your reference.)

No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain

Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment (NR-IQA) method based on the AdaBoost BP neural network in the wavelet domain (WABNN) is proposed. A 36- dimensional image feature vector is constructed by extracting natural scene statistics (NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering (LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.

+More

Cite this article
APA

APA

MLA

Chicago

Yan JunhuaBai XuehanZhang WanyiXiao YongqiChatwin ChrisYoung RupertBirch Phil,.No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain. 30 (2),223-237.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel