Journal of Systems Engineering and Electronics | Vol.30, Issue.2 | | Pages 223-237
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment (NR-IQA) method based on the AdaBoost BP neural network in the wavelet domain (WABNN) is proposed. A 36- dimensional image feature vector is constructed by extracting natural scene statistics (NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering (LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.
Original Text (This is the original text for your reference.)
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment (NR-IQA) method based on the AdaBoost BP neural network in the wavelet domain (WABNN) is proposed. A 36- dimensional image feature vector is constructed by extracting natural scene statistics (NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering (LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method.
+More
dimensional image feature vector natural scene statistics nss features abnn classifier robustness of quality scores efficiency accuracy consistency with subjective scores local information entropy features of distorted image wavelet subband coefficients image features relationship image quality assessment nriqa method distortion wavelet domain image and video engineering live database adaboost bp neural network
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: