IEEE Transactions on Communications | Vol.67, Issue.4 | | Pages 2866-2879
Artificial Noise-Based Beamforming for the MISO VLC Wiretap Channel
This paper investigates the secrecy performance of the multiple-input single-output visible light communication (VLC) wiretap channel. The considered system model comprises three nodes: a transmitter (Alice) equipped with multiple fixtures of LEDs, a legitimate receiver (Bob), and an eavesdropper (Eve), each equipped with one photo-diode. The VLC channel is modeled as a real-valued amplitude-constrained Gaussian channel. Eve is assumed to be randomly located in the same area as Bob. Due to this, artificial noise-based beamforming is adopted as a transmission strategy in order to degrade Eve’s signal-to-noise ratio. Assuming discrete input signaling, we derive an achievable secrecy rate in a closed-form expression as a function of the beamforming vectors and the input distribution. We investigate the average secrecy performance of the system using stochastic geometry to account for the location randomness of Eve. We also adopt the truncated discrete generalized normal (TDGN) as a discrete input distribution. We present several examples through which we confirm the accuracy of the analytical results via Monte Carlo simulations. The results also demonstrate that the TDGN distribution, albeit being not optimal, yields performance close to the secrecy capacity.
Original Text (This is the original text for your reference.)
Artificial Noise-Based Beamforming for the MISO VLC Wiretap Channel
This paper investigates the secrecy performance of the multiple-input single-output visible light communication (VLC) wiretap channel. The considered system model comprises three nodes: a transmitter (Alice) equipped with multiple fixtures of LEDs, a legitimate receiver (Bob), and an eavesdropper (Eve), each equipped with one photo-diode. The VLC channel is modeled as a real-valued amplitude-constrained Gaussian channel. Eve is assumed to be randomly located in the same area as Bob. Due to this, artificial noise-based beamforming is adopted as a transmission strategy in order to degrade Eve’s signal-to-noise ratio. Assuming discrete input signaling, we derive an achievable secrecy rate in a closed-form expression as a function of the beamforming vectors and the input distribution. We investigate the average secrecy performance of the system using stochastic geometry to account for the location randomness of Eve. We also adopt the truncated discrete generalized normal (TDGN) as a discrete input distribution. We present several examples through which we confirm the accuracy of the analytical results via Monte Carlo simulations. The results also demonstrate that the TDGN distribution, albeit being not optimal, yields performance close to the secrecy capacity.
+More
truncated discrete generalized normal tdgn system eveampx2019s signaltonoise realvalued amplitudeconstrained gaussian channel vlc channel noisebased beamforming location randomness of eve stochastic geometry eavesdropper transmission strategy monte carlo discrete input signaling multipleinput singleoutput visible light communication vlc wiretap transmitter average secrecy performance closedform expression
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: