Tellus: Series A, Dynamic Meteorology and Oceanography | Vol.67, Issue.0 | 2017-08-16 | Pages
Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis
Data assimilation experiments on Myanmar tropical cyclone (TC), Nargis, using the Local Ensemble Transform Kalman Filter (LETKF) method and the Japan Meteorological Agency (JMA) non-hydrostatic model (NHM) were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF) produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST) perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.
Original Text (This is the original text for your reference.)
Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis
Data assimilation experiments on Myanmar tropical cyclone (TC), Nargis, using the Local Ensemble Transform Kalman Filter (LETKF) method and the Japan Meteorological Agency (JMA) non-hydrostatic model (NHM) were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF) produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST) perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.
+More
ensemble member probabilistic forecasts of the water levels sea surface temperature sst perturbations myanmar tropical cyclone tc nargis free parameters extended letkf local ensemble transform kalman filter letkf method nhm forecast centres displacements 3day agency jma nonhydrostatic model assimilation of tc advisories nargis track and intensity tc track forecasts observation error of intensities ocean storm surge simulation source
APA
MLA
Chicago
Le Duc,Tohru Kuroda,Kazuo Saito,.Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis. 67 (0),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: