Welcome to the IKCEST

Tellus: Series A, Dynamic Meteorology and Oceanography | Vol.67, Issue.0 | 2017-08-16 | Pages

Tellus: Series A, Dynamic Meteorology and Oceanography

Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis

Le Duc,Tohru Kuroda,Kazuo Saito  
Abstract

Data assimilation experiments on Myanmar tropical cyclone (TC), Nargis, using the Local Ensemble Transform Kalman Filter (LETKF) method and the Japan Meteorological Agency (JMA) non-hydrostatic model (NHM) were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF) produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST) perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.

Original Text (This is the original text for your reference.)

Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis

Data assimilation experiments on Myanmar tropical cyclone (TC), Nargis, using the Local Ensemble Transform Kalman Filter (LETKF) method and the Japan Meteorological Agency (JMA) non-hydrostatic model (NHM) were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF) produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST) perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.

+More

Cite this article
APA

APA

MLA

Chicago

Le Duc,Tohru Kuroda,Kazuo Saito,.Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis. 67 (0),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel