Water | Vol.9, Issue.2 | 2017-05-29 | Pages
Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging
Statistical post-processing for multi-model grand ensemble (GE) hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA) to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts were generated by running the Xinanjiang hydrologic model with ensemble forecasts (164 forecast members), using seven different “THORPEX Interactive Grand Global Ensemble” (TIGGE) weather centres as forcing inputs. Some measures, such as data transformation and high-dimensional optimization, were included in the experiment after considering the practical water regime and data conditions. The results indicate that the BMA post-processing method is capable of improving the performance of raw GE runoff forecasts, yielding more calibrated and sharp predictive probability density functions (PDFs), over a range of lead times from 24 to 120 h. The analysis of percentile forecasts in two different flood events illustrates the great potential and prospects of BMA GE probabilistic river discharge forecasts, for taking precautions against severe flooding events.
Original Text (This is the original text for your reference.)
Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging
Statistical post-processing for multi-model grand ensemble (GE) hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA) to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts were generated by running the Xinanjiang hydrologic model with ensemble forecasts (164 forecast members), using seven different “THORPEX Interactive Grand Global Ensemble” (TIGGE) weather centres as forcing inputs. Some measures, such as data transformation and high-dimensional optimization, were included in the experiment after considering the practical water regime and data conditions. The results indicate that the BMA post-processing method is capable of improving the performance of raw GE runoff forecasts, yielding more calibrated and sharp predictive probability density functions (PDFs), over a range of lead times from 24 to 120 h. The analysis of percentile forecasts in two different flood events illustrates the great potential and prospects of BMA GE probabilistic river discharge forecasts, for taking precautions against severe flooding events.
+More
bma ge probabilistic river discharge forecasts statistically postprocess raw ge runoff forecasts percentile forecasts bma postprocessing method fu river basin xinanjiang hydrologic model with ensemble forecasts 164 forecast members sharp predictive probability density functions highdimensional global ensemble tigge weather centres flooding bayesian model averaging bma multimodel grand ensemble ge hydrologic predictions
APA
MLA
Chicago
Bo Qu,Xingnan Zhang,.Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging. 9 (2),.
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: