Welcome to the IKCEST

Hydrology and Earth System Sciences | Vol.17, Issue.2 | 2017-05-29 | Pages

Hydrology and Earth System Sciences

Benefits from using combined dynamical-statistical downscaling approaches – lessons from a case study in the Mediterranean region

G. Tartari,A. B. Petrangeli,S. Calmanti,F. Salerno,I. Portoghese,E. Romano,N. Guyennon,D. Copetti  
Abstract

Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to assess whether a DD processing performed before the SD permits to obtain more suitable climate scenarios for basin scale hydrological applications starting from GCM simulations. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterised by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile correction. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modelled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the spatial heterogeneity of trends and the long-term time evolution predicted by the GCM. The best results were obtained through the combination of both DD and SD approaches.

Original Text (This is the original text for your reference.)

Benefits from using combined dynamical-statistical downscaling approaches – lessons from a case study in the Mediterranean region

Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to assess whether a DD processing performed before the SD permits to obtain more suitable climate scenarios for basin scale hydrological applications starting from GCM simulations. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterised by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile correction. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modelled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the spatial heterogeneity of trends and the long-term time evolution predicted by the GCM. The best results were obtained through the combination of both DD and SD approaches.

+More

Cite this article
APA

APA

MLA

Chicago

G. Tartari,A. B. Petrangeli,S. Calmanti,F. Salerno,I. Portoghese,E. Romano,N. Guyennon,D. Copetti,.Benefits from using combined dynamical-statistical downscaling approaches – lessons from a case study in the Mediterranean region. 17 (2),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel