Welcome to the IKCEST

Advances in Geosciences | Vol.7, Issue. | 2017-05-29 | Pages

Advances in Geosciences

Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study

  
Abstract

The initiation of a deep and severe impact Mediterranean cyclone in the lee of Atlas Mountains is investigated by a series of numerical experiments using the MM5 forecast model. Roles of orography, surface sensible heat flux and an upper-level potential vorticity anomaly are identified using factor separation method. Results of model simulations show that orography blocking is responsible for generation of the low-level shallow vortex in the first phase of lee development. Upper-level potential vorticity is a principal ingredient of this event, responsible for a dominant deepening effect in the later stage of lee formation. Analysis of cyclone paths shows that orography tends to keep the cyclone stationary, while upper-level dynamical factors are crucial for advection of the system to the Mediterranean Sea. The most noteworthy influence of surface sensible heat flux is identified as an afternoon destruction of a surface baroclinic zone and associated weaker cyclogenesis.

Original Text (This is the original text for your reference.)

Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study

The initiation of a deep and severe impact Mediterranean cyclone in the lee of Atlas Mountains is investigated by a series of numerical experiments using the MM5 forecast model. Roles of orography, surface sensible heat flux and an upper-level potential vorticity anomaly are identified using factor separation method. Results of model simulations show that orography blocking is responsible for generation of the low-level shallow vortex in the first phase of lee development. Upper-level potential vorticity is a principal ingredient of this event, responsible for a dominant deepening effect in the later stage of lee formation. Analysis of cyclone paths shows that orography tends to keep the cyclone stationary, while upper-level dynamical factors are crucial for advection of the system to the Mediterranean Sea. The most noteworthy influence of surface sensible heat flux is identified as an afternoon destruction of a surface baroclinic zone and associated weaker cyclogenesis.

+More

Cite this article
APA

APA

MLA

Chicago

,.Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study. 7 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel