Welcome to the IKCEST

International Journal of Quantum Chemistry | Vol.119, Issue.119 | | Pages

International Journal of Quantum Chemistry

The s‐homodesmotic method for the computation of conventional strain energies of bicyclic systems and individual rings within these systems

D. Brandon Magers, Andrew K. Magers, David H. Magers  
Abstract

The s‐homodesmotic method for computing conventional strain energies (CSE) has been extended for the first time to bicyclic systems and to individual rings within these systems. Unique isodesmic, homodesmotic, and hyperhomodesmotic reactions originate from the s‐homodesmotic method. These are used to investigate 12 bicyclic systems comprising cyclopropane and cyclobutane and how the CSE of each system compares to the sum of the individual rings within each. Equilibrium geometries, harmonic vibrational frequencies, and the corresponding electronic energies and zero point vibrational energy corrections are computed for all relevant molecules using second‐order perturbation theory and density functional theory (B3LYP) with the correlation consistent basis sets cc‐pVDZ and cc‐pVTZ. Single‐point CCSD(T) energies are computed at the MP2/cc‐pVTZ optimized geometries to ascertain the importance of higher order correlation effects. Results indicate that CSEs are additive when the two rings are separated by one or two bonds and somewhat additive in other cases.

Original Text (This is the original text for your reference.)

The s‐homodesmotic method for the computation of conventional strain energies of bicyclic systems and individual rings within these systems

The s‐homodesmotic method for computing conventional strain energies (CSE) has been extended for the first time to bicyclic systems and to individual rings within these systems. Unique isodesmic, homodesmotic, and hyperhomodesmotic reactions originate from the s‐homodesmotic method. These are used to investigate 12 bicyclic systems comprising cyclopropane and cyclobutane and how the CSE of each system compares to the sum of the individual rings within each. Equilibrium geometries, harmonic vibrational frequencies, and the corresponding electronic energies and zero point vibrational energy corrections are computed for all relevant molecules using second‐order perturbation theory and density functional theory (B3LYP) with the correlation consistent basis sets cc‐pVDZ and cc‐pVTZ. Single‐point CCSD(T) energies are computed at the MP2/cc‐pVTZ optimized geometries to ascertain the importance of higher order correlation effects. Results indicate that CSEs are additive when the two rings are separated by one or two bonds and somewhat additive in other cases.

+More

Cite this article
APA

APA

MLA

Chicago

D. Brandon Magers, Andrew K. Magers, David H. Magers,.The s‐homodesmotic method for the computation of conventional strain energies of bicyclic systems and individual rings within these systems. 119 (119),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel