Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2015, Issue. | 2017-05-29 | Pages

Mathematical Problems in Engineering

Backtracking-Based Simultaneous Orthogonal Matching Pursuit for Sparse Unmixing of Hyperspectral Data

Xin Liu,Fanqiang Kong,Wenjun Guo,Yunsong Li,Qiu Shen  
Abstract

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed signatures of a hyperspectral image can be expressed in the form of linear combination of only a few spectral signatures (endmembers) in an available spectral library. Simultaneous orthogonal matching pursuit (SOMP) algorithm is a typical simultaneous greedy algorithm for sparse unmixing, which involves finding the optimal subset of signatures for the observed data from a spectral library. But the numbers of endmembers selected by SOMP are still larger than the actual number, and the nonexisting endmembers will have a negative effect on the estimation of the abundances corresponding to the actual endmembers. This paper presents a variant of SOMP, termed backtracking-based SOMP (BSOMP), for sparse unmixing of hyperspectral data. As an extension of SOMP, BSOMP incorporates a backtracking technique to detect the previous chosen endmembers’ reliability and then deletes the unreliable endmembers. Through this modification, BSOMP can select the true endmembers more accurately than SOMP. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed algorithm.

Original Text (This is the original text for your reference.)

Backtracking-Based Simultaneous Orthogonal Matching Pursuit for Sparse Unmixing of Hyperspectral Data

Sparse unmixing is a promising approach in a semisupervised fashion by assuming that the observed signatures of a hyperspectral image can be expressed in the form of linear combination of only a few spectral signatures (endmembers) in an available spectral library. Simultaneous orthogonal matching pursuit (SOMP) algorithm is a typical simultaneous greedy algorithm for sparse unmixing, which involves finding the optimal subset of signatures for the observed data from a spectral library. But the numbers of endmembers selected by SOMP are still larger than the actual number, and the nonexisting endmembers will have a negative effect on the estimation of the abundances corresponding to the actual endmembers. This paper presents a variant of SOMP, termed backtracking-based SOMP (BSOMP), for sparse unmixing of hyperspectral data. As an extension of SOMP, BSOMP incorporates a backtracking technique to detect the previous chosen endmembers’ reliability and then deletes the unreliable endmembers. Through this modification, BSOMP can select the true endmembers more accurately than SOMP. Experimental results on both simulated and real data demonstrate the effectiveness of the proposed algorithm.

+More

Cite this article
APA

APA

MLA

Chicago

Xin Liu,Fanqiang Kong,Wenjun Guo,Yunsong Li,Qiu Shen,.Backtracking-Based Simultaneous Orthogonal Matching Pursuit for Sparse Unmixing of Hyperspectral Data. 2015 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel