IEEE Transactions on Very Large Scale Integration (VLSI) Systems | Vol.24, Issue.5 | | Pages 1770-1782
CLAP: Clustered Look-Ahead Prefetching for Energy-Efficient DRAM System
DRAM is one of the main sources of energy consumption in computer systems. Thus, reducing the energy consumption of DRAM can prolong the lifetime of battery-operated embedded/mobile systems. To this end, we propose a DRAM energy-aware prefetching scheme to increase row buffer hits and idle periods of DRAM by clustering its accesses. Although prefetching schemes have traditionally been used to improve the system performance, utilizing them for the energy conservation of DRAM has yet to be investigated. For such energy conservation, our scheme accurately predicts and clusters potential future DRAM accesses. Clustered DRAM accesses exploit a popular first-ready first-come first-serve memory request scheduling and a power-down mode of DRAM more effectively; the probability of row buffer hits and idle periods is significantly increased by our clustering scheme. As a result, large amounts of row activation and idle energy consumption, which are major energy consumption factors in modern DRAM, can be saved. Our prefetching-based memory traffic-clustering scheme was shown to reduce the power and energy consumption of DRAM and improve its performance by an average of 0.2%, 28.9%, and 15.7%, respectively, for memory-intensive programs.
Original Text (This is the original text for your reference.)
CLAP: Clustered Look-Ahead Prefetching for Energy-Efficient DRAM System
DRAM is one of the main sources of energy consumption in computer systems. Thus, reducing the energy consumption of DRAM can prolong the lifetime of battery-operated embedded/mobile systems. To this end, we propose a DRAM energy-aware prefetching scheme to increase row buffer hits and idle periods of DRAM by clustering its accesses. Although prefetching schemes have traditionally been used to improve the system performance, utilizing them for the energy conservation of DRAM has yet to be investigated. For such energy conservation, our scheme accurately predicts and clusters potential future DRAM accesses. Clustered DRAM accesses exploit a popular first-ready first-come first-serve memory request scheduling and a power-down mode of DRAM more effectively; the probability of row buffer hits and idle periods is significantly increased by our clustering scheme. As a result, large amounts of row activation and idle energy consumption, which are major energy consumption factors in modern DRAM, can be saved. Our prefetching-based memory traffic-clustering scheme was shown to reduce the power and energy consumption of DRAM and improve its performance by an average of 0.2%, 28.9%, and 15.7%, respectively, for memory-intensive programs.
+More
dram accesses clustered dram accesses prefetching schemes prefetchingbased memory trafficclustering scheme clustering its power computer systems energy consumption row buffer hits firstready firstcome firstserve memory request scheduling batteryoperated dram energyaware prefetching scheme energy conservation of dram
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: