Welcome to the IKCEST

Journal of Engineering Mechanics | Vol.142, Issue.8 | | Pages

Journal of Engineering Mechanics

Tail-Equivalent Linearization of Inelastic Multisupport Structures Subjected to Spatially Varying Stochastic Ground Motion

Ziqi Wang   Armen Der Kiureghian  
Abstract

After a brief review of time- and frequency-domain tail-equivalent linearization methods (TELM) for uniform excitation problems, this paper extends TELM for application to nonlinear systems subjected to multisupport seismic excitations. The spatial variability of the ground motion is represented by a coherency function that characterizes the incoherence, wave-passage, and site-response effects. It is found that for multisupport excitation problems, it is most convenient to formulate TELM by using the ground displacement as input. The resulting tail-equivalent linear system (TELS) is defined by frequency-response functions relating the response quantity of interest to each support displacement. A method to reduce the number of random variables in the TELM analysis is introduced. The proposed method is demonstrated through numerical examples with varying structural properties and ground motion coherency in order to investigate various aspects of TELM and the major influences of differential support motions on a nonlinear system.

Original Text (This is the original text for your reference.)

Tail-Equivalent Linearization of Inelastic Multisupport Structures Subjected to Spatially Varying Stochastic Ground Motion

After a brief review of time- and frequency-domain tail-equivalent linearization methods (TELM) for uniform excitation problems, this paper extends TELM for application to nonlinear systems subjected to multisupport seismic excitations. The spatial variability of the ground motion is represented by a coherency function that characterizes the incoherence, wave-passage, and site-response effects. It is found that for multisupport excitation problems, it is most convenient to formulate TELM by using the ground displacement as input. The resulting tail-equivalent linear system (TELS) is defined by frequency-response functions relating the response quantity of interest to each support displacement. A method to reduce the number of random variables in the TELM analysis is introduced. The proposed method is demonstrated through numerical examples with varying structural properties and ground motion coherency in order to investigate various aspects of TELM and the major influences of differential support motions on a nonlinear system.

+More

Cite this article
APA

APA

MLA

Chicago

Ziqi Wang,Armen Der Kiureghian,.Tail-Equivalent Linearization of Inelastic Multisupport Structures Subjected to Spatially Varying Stochastic Ground Motion. 142 (8),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel