Welcome to the IKCEST

Mathematical Problems in Engineering | Vol.2014, Issue. | 2017-05-29 | Pages

Mathematical Problems in Engineering

Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction

Chengzhi Deng,Wei Tian,Zhaoming Wu,Saifeng Hu,Shengqian Wang  
Abstract

Recent developments in compressive sensing (CS) show that it is possible to accurately reconstruct the magnetic resonance (MR) image from undersampled k-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model associated with the nonlocal total variation (NLTV) and the wavelet approximate sparsity. Nonlocal total variation can restore periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more accurate sparse reconstruction than fixed wavelet l0 and l1 norm. Furthermore, a variable splitting and augmented Lagrangian algorithm is presented to solve the proposed minimization problem. Experimental results on MR image reconstruction demonstrate that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality assessment.

Original Text (This is the original text for your reference.)

Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction

Recent developments in compressive sensing (CS) show that it is possible to accurately reconstruct the magnetic resonance (MR) image from undersampled k-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model associated with the nonlocal total variation (NLTV) and the wavelet approximate sparsity. Nonlocal total variation can restore periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more accurate sparse reconstruction than fixed wavelet l0 and l1 norm. Furthermore, a variable splitting and augmented Lagrangian algorithm is presented to solve the proposed minimization problem. Experimental results on MR image reconstruction demonstrate that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality assessment.

+More

Cite this article
APA

APA

MLA

Chicago

Chengzhi Deng,Wei Tian,Zhaoming Wu,Saifeng Hu,Shengqian Wang,.Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction. 2014 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel