Welcome to the IKCEST

Atmospheric Chemistry and Physics | Vol.11, Issue.14 | 2017-05-30 | Pages

Atmospheric Chemistry and Physics

Trace gas and particle emissions from open biomass burning in Mexico

I. R. Burling,R. J. Yokelson,S. K. Akagi,S. P. Urbanski,C. E. Wold,E. L. Atlas,C. Wiedinmyer,D. W. Toohey,K. Adachi,P. R. Buseck  
Abstract

We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry season they were at least 1.7 times larger for NOx, NH3, H2, and most non-methane organic compounds. Our measurements suggest that urban deposition and high windspeed may also be associated with significantly elevated NOx EF. When considering all fires sampled, the percentage of particles containing soot increased from 15 to 60 % as the modified combustion efficiency increased from 0.88 to 0.98. We estimate that about 175 Tg of fuel was consumed by open burning of biomass and garbage and as biofuel (mainly wood cooking fires) in Mexico in 2006. Combining the fuel consumption estimates with our EF measurements suggests that the above combustion sources account for a large fraction of the reactive trace gases and more than 90 % of the total primary, fine carbonaceous particles emitted by all combustion sources in Mexico.

Original Text (This is the original text for your reference.)

Trace gas and particle emissions from open biomass burning in Mexico

We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry season they were at least 1.7 times larger for NOx, NH3, H2, and most non-methane organic compounds. Our measurements suggest that urban deposition and high windspeed may also be associated with significantly elevated NOx EF. When considering all fires sampled, the percentage of particles containing soot increased from 15 to 60 % as the modified combustion efficiency increased from 0.88 to 0.98. We estimate that about 175 Tg of fuel was consumed by open burning of biomass and garbage and as biofuel (mainly wood cooking fires) in Mexico in 2006. Combining the fuel consumption estimates with our EF measurements suggests that the above combustion sources account for a large fraction of the reactive trace gases and more than 90 % of the total primary, fine carbonaceous particles emitted by all combustion sources in Mexico.

+More

Cite this article
APA

APA

MLA

Chicago

I. R. Burling,R. J. Yokelson,S. K. Akagi,S. P. Urbanski,C. E. Wold,E. L. Atlas,C. Wiedinmyer,D. W. Toohey,K. Adachi,P. R. Buseck,.Trace gas and particle emissions from open biomass burning in Mexico. 11 (14),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel