Welcome to the IKCEST

IEEE Transactions on Multimedia | Vol.18, Issue.10 | | Pages 2054-2065

IEEE Transactions on Multimedia

Efficient Residual DPCM Using an l_1 Robust Linear Prediction in Screen Content Video Coding

Min-Joo Kang   Na-Young Kim   Je-Won Kang   Soo-Kyung Ryu  
Abstract

In this paper, a residual differential pulse code modulation (RDPCM) coding technique using a weighted linear combination of neighboring residual samples is proposed to provide coding efficiency in the screen content video coding. The RDPCM performs the sample-based prediction of residue to reduce spatial redundancies. The proposed method uses the l1 optimization in the weight derivation by considering the statistical characteristics of graphical components in videos in an intracoding. Specifically we use the least absolute shrinkage and selection operator to derive the weights because the solution is accurate in high variance residue. Furthermore, we enhance parallelism in a line processing by restricting the support to the row-wise prediction to above samples or the column-wise prediction to the left samples. The proposed method uses an explicit RDPCM scheme, so a coding mode determined by rate-distortion optimization is transmitted to a decoder. For coding the overhead, we develop a context design in CABAC based on correlation between an intraprediction direction and an RDPCM prediction mode. It is demonstrated with the experimental results that the proposed method provides a significant coding gain over the state-of-the-art reference codec for screen content video coding.

Original Text (This is the original text for your reference.)

Efficient Residual DPCM Using an l_1 Robust Linear Prediction in Screen Content Video Coding

In this paper, a residual differential pulse code modulation (RDPCM) coding technique using a weighted linear combination of neighboring residual samples is proposed to provide coding efficiency in the screen content video coding. The RDPCM performs the sample-based prediction of residue to reduce spatial redundancies. The proposed method uses the l1 optimization in the weight derivation by considering the statistical characteristics of graphical components in videos in an intracoding. Specifically we use the least absolute shrinkage and selection operator to derive the weights because the solution is accurate in high variance residue. Furthermore, we enhance parallelism in a line processing by restricting the support to the row-wise prediction to above samples or the column-wise prediction to the left samples. The proposed method uses an explicit RDPCM scheme, so a coding mode determined by rate-distortion optimization is transmitted to a decoder. For coding the overhead, we develop a context design in CABAC based on correlation between an intraprediction direction and an RDPCM prediction mode. It is demonstrated with the experimental results that the proposed method provides a significant coding gain over the state-of-the-art reference codec for screen content video coding.

+More

Cite this article
APA

APA

MLA

Chicago

Min-Joo Kang, Na-Young Kim,Je-Won Kang, Soo-Kyung Ryu,.Efficient Residual DPCM Using an l_1 Robust Linear Prediction in Screen Content Video Coding. 18 (10),2054-2065.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel