Welcome to the IKCEST

Hydrology and Earth System Sciences | Vol.17, Issue.7 | 2017-05-29 | Pages

Hydrology and Earth System Sciences

Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models

T. Wagener,J. D. Herman,J. B. Kollat,P. M. Reed  
Abstract

The increase in spatially distributed hydrologic modeling warrants a corresponding increase in diagnostic methods capable of analyzing complex models with large numbers of parameters. Sobol' sensitivity analysis has proven to be a valuable tool for diagnostic analyses of hydrologic models. However, for many spatially distributed models, the Sobol' method requires a prohibitive number of model evaluations to reliably decompose output variance across the full set of parameters. We investigate the potential of the method of Morris, a screening-based sensitivity approach, to provide results sufficiently similar to those of the Sobol' method at a greatly reduced computational expense. The methods are benchmarked on the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) over a six-month period in the Blue River watershed, Oklahoma, USA. The Sobol' method required over six million model evaluations to ensure reliable sensitivity indices, corresponding to more than 30 000 computing hours and roughly 180 gigabytes of storage space. We find that the method of Morris is able to correctly screen the most and least sensitive parameters with 300 times fewer model evaluations, requiring only 100 computing hours and 1 gigabyte of storage space. The method of Morris proves to be a promising diagnostic approach for global sensitivity analysis of highly parameterized, spatially distributed hydrologic models.

Original Text (This is the original text for your reference.)

Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models

The increase in spatially distributed hydrologic modeling warrants a corresponding increase in diagnostic methods capable of analyzing complex models with large numbers of parameters. Sobol' sensitivity analysis has proven to be a valuable tool for diagnostic analyses of hydrologic models. However, for many spatially distributed models, the Sobol' method requires a prohibitive number of model evaluations to reliably decompose output variance across the full set of parameters. We investigate the potential of the method of Morris, a screening-based sensitivity approach, to provide results sufficiently similar to those of the Sobol' method at a greatly reduced computational expense. The methods are benchmarked on the Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM) over a six-month period in the Blue River watershed, Oklahoma, USA. The Sobol' method required over six million model evaluations to ensure reliable sensitivity indices, corresponding to more than 30 000 computing hours and roughly 180 gigabytes of storage space. We find that the method of Morris is able to correctly screen the most and least sensitive parameters with 300 times fewer model evaluations, requiring only 100 computing hours and 1 gigabyte of storage space. The method of Morris proves to be a promising diagnostic approach for global sensitivity analysis of highly parameterized, spatially distributed hydrologic models.

+More

Cite this article
APA

APA

MLA

Chicago

T. Wagener,J. D. Herman,J. B. Kollat,P. M. Reed,.Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. 17 (7),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel