Welcome to the IKCEST

EURASIP Journal on Wireless Communications and Networking | Vol.2010, Issue.1 | 2017-05-29 | Pages

EURASIP Journal on Wireless Communications and Networking

Multiagent -Learning for Aloha-Like Spectrum Access in Cognitive Radio Systems

Li Husheng  
Abstract

An Aloha-like spectrum access scheme without negotiation is considered for multiuser and multichannel cognitive radio systems. To avoid collisions incurred by the lack of coordination, each secondary user learns how to select channels according to its experience. Multiagent reinforcement leaning (MARL) is applied for the secondary users to learn good strategies of channel selection. Specifically, the framework of -learning is extended from single user case to multiagent case by considering other secondary users as a part of the environment. The dynamics of the -learning are illustrated using a Metrick-Polak plot, which shows the traces of -values in the two-user case. For both complete and partial observation cases, rigorous proofs of the convergence of multiagent -learning without communications, under certain conditions, are provided using the Robins-Monro algorithm and contraction mapping, respectively. The learning performance (speed and gain in utility) is evaluated by numerical simulations.

Original Text (This is the original text for your reference.)

Multiagent -Learning for Aloha-Like Spectrum Access in Cognitive Radio Systems

An Aloha-like spectrum access scheme without negotiation is considered for multiuser and multichannel cognitive radio systems. To avoid collisions incurred by the lack of coordination, each secondary user learns how to select channels according to its experience. Multiagent reinforcement leaning (MARL) is applied for the secondary users to learn good strategies of channel selection. Specifically, the framework of -learning is extended from single user case to multiagent case by considering other secondary users as a part of the environment. The dynamics of the -learning are illustrated using a Metrick-Polak plot, which shows the traces of -values in the two-user case. For both complete and partial observation cases, rigorous proofs of the convergence of multiagent -learning without communications, under certain conditions, are provided using the Robins-Monro algorithm and contraction mapping, respectively. The learning performance (speed and gain in utility) is evaluated by numerical simulations.

+More

Cite this article
APA

APA

MLA

Chicago

Li Husheng,.Multiagent -Learning for Aloha-Like Spectrum Access in Cognitive Radio Systems. 2010 (1),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel