Welcome to the IKCEST

Journal of Applied Mathematics and Stochastic Analysis | Vol.11, Issue.3 | 2017-05-30 | Pages

Journal of Applied Mathematics and Stochastic Analysis

Sample correlations of infinite variance time series models: an empirical and theoretical study

Jason Cohen,Sidney Resnick,Gennady Samorodnitsky  
Abstract

When the elements of a stationary ergodic time series have finite variance the sample correlation function converges (with probability 1) to the theoretical correlation function. What happens in the case where the variance is infinite? In certain cases, the sample correlation function converges in probability to a constant, but not always. If within a class of heavy tailed time series the sample correlation functions do not converge to a constant, then more care must be taken in making inferences and in model selection on the basis of sample autocorrelations. We experimented with simulating various heavy tailed stationary sequences in an attempt to understand what causes the sample correlation function to converge or not to converge to a constant. In two new cases, namely the sum of two independent moving averages and a random permutation scheme, we are able to provide theoretical explanations for a random limit of the sample autocorrelation function as the sample grows.

Original Text (This is the original text for your reference.)

Sample correlations of infinite variance time series models: an empirical and theoretical study

When the elements of a stationary ergodic time series have finite variance the sample correlation function converges (with probability 1) to the theoretical correlation function. What happens in the case where the variance is infinite? In certain cases, the sample correlation function converges in probability to a constant, but not always. If within a class of heavy tailed time series the sample correlation functions do not converge to a constant, then more care must be taken in making inferences and in model selection on the basis of sample autocorrelations. We experimented with simulating various heavy tailed stationary sequences in an attempt to understand what causes the sample correlation function to converge or not to converge to a constant. In two new cases, namely the sum of two independent moving averages and a random permutation scheme, we are able to provide theoretical explanations for a random limit of the sample autocorrelation function as the sample grows.

+More

Cite this article
APA

APA

MLA

Chicago

Jason Cohen,Sidney Resnick,Gennady Samorodnitsky,.Sample correlations of infinite variance time series models: an empirical and theoretical study. 11 (3),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel