Welcome to the IKCEST

Journal of Applied Mathematics | Vol.2012, Issue. | 2017-05-29 | Pages

Journal of Applied Mathematics

New Nonsmooth Equations-Based Algorithms for -Norm Minimization and Applications

Lei Wu,Zhe Sun  
Abstract

Recently, Xiao et al. proposed a nonsmooth equations-based method to solve the -norm minimization problem (2011). The advantage of this method is its simplicity and lower storage. In this paper, based on new nonsmooth equations reformulation, we investigate new nonsmooth equations-based algorithms for solving -norm minimization problems. Under mild conditions, we show that the proposed algorithms are globally convergent. The preliminary numerical results demonstrate the effectiveness of the proposed algorithms.

Original Text (This is the original text for your reference.)

New Nonsmooth Equations-Based Algorithms for -Norm Minimization and Applications

Recently, Xiao et al. proposed a nonsmooth equations-based method to solve the -norm minimization problem (2011). The advantage of this method is its simplicity and lower storage. In this paper, based on new nonsmooth equations reformulation, we investigate new nonsmooth equations-based algorithms for solving -norm minimization problems. Under mild conditions, we show that the proposed algorithms are globally convergent. The preliminary numerical results demonstrate the effectiveness of the proposed algorithms.

+More

Cite this article
APA

APA

MLA

Chicago

Lei Wu,Zhe Sun,.New Nonsmooth Equations-Based Algorithms for -Norm Minimization and Applications. 2012 (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel