Laser & Photonics Reviews | Vol.12, Issue.12 | | Pages
Resonant Edge‐State Switching in Polariton Topological Insulators
Topological insulators are unique devices supporting unidirectional edge states at their interfaces. Due to topological protection, such edge states persist in the presence of disorder and do not experience backscattering upon interaction with defects. Despite the topological protection and the fact that such states at the opposite edges of an insulator carry opposite currents, a physical mechanism exists allowing topological excitations propagating at opposite edges to be resonantly coupled. Such a mechanism uses weak periodic temporal modulations of the system parameters and does not affect the internal symmetry and topology of the system. This mechanism is illustrated in truncated honeycomb arrays of microcavity pillars, where topological insulation is possible for polaritons under the combined action of spin–orbit coupling and Zeeman splitting in the external magnetic field. The temporal modulation of the potential leads to a periodic switching between topological states with the same Bloch momentum, but located at the opposite edges. The switching rate is found to increase for narrower ribbon structures and for larger modulation depth, though it is changing nonmonotonically with the Bloch momentum of the input edge state. These results provide a promising realization of a coupling device based on topologically protected states.
Original Text (This is the original text for your reference.)
Resonant Edge‐State Switching in Polariton Topological Insulators
Topological insulators are unique devices supporting unidirectional edge states at their interfaces. Due to topological protection, such edge states persist in the presence of disorder and do not experience backscattering upon interaction with defects. Despite the topological protection and the fact that such states at the opposite edges of an insulator carry opposite currents, a physical mechanism exists allowing topological excitations propagating at opposite edges to be resonantly coupled. Such a mechanism uses weak periodic temporal modulations of the system parameters and does not affect the internal symmetry and topology of the system. This mechanism is illustrated in truncated honeycomb arrays of microcavity pillars, where topological insulation is possible for polaritons under the combined action of spin–orbit coupling and Zeeman splitting in the external magnetic field. The temporal modulation of the potential leads to a periodic switching between topological states with the same Bloch momentum, but located at the opposite edges. The switching rate is found to increase for narrower ribbon structures and for larger modulation depth, though it is changing nonmonotonically with the Bloch momentum of the input edge state. These results provide a promising realization of a coupling device based on topologically protected states.
+More
temporal modulation of the potential external magnetic field unidirectional edge states periodic switching between topological states narrower ribbon structures disorder bloch momentum insulator honeycomb arrays of microcavity spinorbit coupling topological excitations zeeman splitting internal symmetry defects topologically protected states backscattering
Select your report category*
Reason*
New sign-in location:
Last sign-in location:
Last sign-in date: