Welcome to the IKCEST

Journal of the American Ceramic Society | Vol.101, Issue.101 | | Pages

Journal of the American Ceramic Society

A vibrational study of phase transitions in Fe2P2O7 and Cr2P2O7 under high‐pressures

Nicolas A. Blanc , Quentin Williams , Brahim El Bali , Rachid Essehli  
Abstract

The vibrational properties of synthetic iron diphosphate (Fe2P2O7) and chromium diphosphate (Cr2P2O7) are studied under high‐pressure conditions between ~22 and ~30 GPa, respectively. Each compound's structural response to pressure and pressure‐induced phase transitions are characterized. The chromium‐bearing sample shows coalescence of infrared bands occurring near 6 and 17 GPa: these may be associated with increases in the local symmetry of the P2O7 group. The iron sample undergoes a first‐order phase transition near ~9 GPa, and a possible phase transition near 5.5 GPa. At 9 GPa, the initially single, strong symmetric PO4 stretching mode splits into four modes, and the sole asymmetric PO4 stretching mode splits into two bands. These changes indicate the presence of multiple tetrahedral environments within a larger volume unit cell, and the relative frequencies of the split vibrations indicate a P2O7 environment with a markedly narrowed P–O–P angle. The difference between the behavior of the iron and chromium compounds is probably generated by the smaller iron ion producing a discontinuous decrease in the P–O–P angle at lower pressures than in the analogous chromium compound. Our results demonstrate that the dimerized P2O7 group remains stable under compression to over 20‐30 GPa at 300 K.

Original Text (This is the original text for your reference.)

A vibrational study of phase transitions in Fe2P2O7 and Cr2P2O7 under high‐pressures

The vibrational properties of synthetic iron diphosphate (Fe2P2O7) and chromium diphosphate (Cr2P2O7) are studied under high‐pressure conditions between ~22 and ~30 GPa, respectively. Each compound's structural response to pressure and pressure‐induced phase transitions are characterized. The chromium‐bearing sample shows coalescence of infrared bands occurring near 6 and 17 GPa: these may be associated with increases in the local symmetry of the P2O7 group. The iron sample undergoes a first‐order phase transition near ~9 GPa, and a possible phase transition near 5.5 GPa. At 9 GPa, the initially single, strong symmetric PO4 stretching mode splits into four modes, and the sole asymmetric PO4 stretching mode splits into two bands. These changes indicate the presence of multiple tetrahedral environments within a larger volume unit cell, and the relative frequencies of the split vibrations indicate a P2O7 environment with a markedly narrowed P–O–P angle. The difference between the behavior of the iron and chromium compounds is probably generated by the smaller iron ion producing a discontinuous decrease in the P–O–P angle at lower pressures than in the analogous chromium compound. Our results demonstrate that the dimerized P2O7 group remains stable under compression to over 20‐30 GPa at 300 K.

+More

Cite this article
APA

APA

MLA

Chicago

Nicolas A. Blanc , Quentin Williams , Brahim El Bali , Rachid Essehli,.A vibrational study of phase transitions in Fe2P2O7 and Cr2P2O7 under high‐pressures. 101 (101),.

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel