Welcome to the IKCEST

The Journal of Engineering | Vol., Issue. | 2017-05-23 | Pages

The Journal of Engineering

Further investigation on adaptive search

Mrinal Mandal,Jun Ma,Ming Hong Pi,Anup Basu  
Abstract

Adaptive search is one of the fastest fractal compression algorithms and has gained great success in many industrial applications. By substituting the luminance offset by the range block mean, the authors create a completely new version for both the encoding and decoding algorithms. In this paper, theoretically, they prove that the proposed decoding algorithm converges at least as fast as the existing decoding algorithms using the luminance offset. In addition, they prove that the attractor of the decoding algorithm can be represented by a linear combination of range-averaged images. These theorems are very important contributions to the theory and applications of fractal image compression. As a result, the decoding image can be represented as the sum of the DC and AC component images, which is similar with discrete cosine transform or wavelet transform. To further speed up this algorithm and reduce the complexity of range and domain blocks matching, they propose two improvements in this paper, that is, employing the post-quantisation and geometric neighbouring local search to replace the currently used pre-quantisation and the global search, respectively. The corresponding experimental results show the proposed encoding and decoding algorithms can provide a better performance compared with the existing algorithms.

Original Text (This is the original text for your reference.)

Further investigation on adaptive search

Adaptive search is one of the fastest fractal compression algorithms and has gained great success in many industrial applications. By substituting the luminance offset by the range block mean, the authors create a completely new version for both the encoding and decoding algorithms. In this paper, theoretically, they prove that the proposed decoding algorithm converges at least as fast as the existing decoding algorithms using the luminance offset. In addition, they prove that the attractor of the decoding algorithm can be represented by a linear combination of range-averaged images. These theorems are very important contributions to the theory and applications of fractal image compression. As a result, the decoding image can be represented as the sum of the DC and AC component images, which is similar with discrete cosine transform or wavelet transform. To further speed up this algorithm and reduce the complexity of range and domain blocks matching, they propose two improvements in this paper, that is, employing the post-quantisation and geometric neighbouring local search to replace the currently used pre-quantisation and the global search, respectively. The corresponding experimental results show the proposed encoding and decoding algorithms can provide a better performance compared with the existing algorithms.

+More

Cite this article
APA

APA

MLA

Chicago

Mrinal Mandal,Jun Ma,Ming Hong Pi,Anup Basu,.Further investigation on adaptive search. (),.

References

Disclaimer: The translated content is provided by third-party translation service providers, and IKCEST shall not assume any responsibility for the accuracy and legality of the content.
Translate engine
Article's language
English
中文
Pусск
Français
Español
العربية
Português
Kikongo
Dutch
kiswahili
هَوُسَ
IsiZulu
Action
Recommended articles

Report

Select your report category*



Reason*



By pressing send, your feedback will be used to improve IKCEST. Your privacy will be protected.

Submit
Cancel